当前位置: 首页 > news >正文

【经典LeetCode算法题目专栏分类】【第9期】深度优先搜索DFS与并查集:括号生成、岛屿问题、扫雷游戏

 《博主简介》

小伙伴们好,我是阿旭。专注于人工智能AI、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】
二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】

DFS

括号生成

DFS

class Solution:

    def generateParenthesis(self, n: int) -> List[str]:

        def DFS(left, right, s):

            if left == n and right == n:

                res.append(s)

                return

            if left < n:

                DFS(left+1,right,s+'(')

            if right < left:

                DFS(left,right + 1,s+')')

        res = []

        DFS(0,0,'')

        return res

BFS

class Node:

    def __init__(self, left, right, s):

        self.left = left

        self.right = right

        self.s = s

class Solution:

    def generateParenthesis(self, n: int) -> List[str]:

        # BFS写法

        res = []

        if n == 0:

            return res

        queue = [Node(n,n,'')]

        while queue:

            node = queue.pop(0)

            if node.left == 0 and node.right == 0:

                res.append(node.s)

            if node.left > 0:

                queue.append(Node(node.left-1, node.right, node.s+'('))

            if node.right > 0 and node.right > node.left:

                queue.append(Node(node.left, node.right-1, node.s+')'))

        return res

# 写法2:

class Solution:

    def generateParenthesis(self, n: int) -> List[str]:

        # BFS写法

        res = []

        if n == 0:

            return res

        queue = [(n,n,'')]

        while queue:

            node = queue.pop(0)

            if node[0] == 0 and node[1] == 0:

                res.append(node[2])

            if node[0] > 0:

                queue.append((node[0]-1, node[1], node[2]+'('))

            if node[1] > 0 and node[1] > node[0]:

                queue.append((node[0], node[1]-1, node[2]+')'))

        return res

通常搜索几乎都是用深度优先遍历(回溯算法)。

广度优先遍历,得自己编写结点类,显示使用队列这个数据结构。深度优先遍历的时候,就可以直接使用系统栈,在递归方法执行完成的时候,系统栈顶就把我们所需要的状态信息直接弹出,而无须编写结点类和显示使用栈。

将BFS写法中的pop(0)改为pop()即为深度优先的迭代形式。

对比迭代的BFS写法与递归的DFS写法,可以看到,BFS其实是将DFS的参数当做队列中的一个元素来进行处理罢了,其他的与DFS没有什么区别。

并查集

岛屿问题

class Solution:

    def numIslands(self, grid: List[List[str]]) -> int:

        self.m = len(grid)

        self.n = len(grid[0])

        res = 0

        for i in range(self.m):

            for j in range(self.n):

                if grid[i][j] == '1':

                    self.sink(i,j,grid)

                    res += 1

        return res

    

    def sink(self, i, j, grid):

        grid[i][j] = '0'

        for ni,nj in [(i-1,j),(i+1,j),(i,j-1),(i,j+1)]:

            if 0<=ni<self.m and 0<=nj<self.n and grid[ni][nj] == '1':

                self.sink(ni,nj,grid)

扫雷游戏

# DFS

class Solution:

    def updateBoard(self, board: List[List[str]], click: List[int]) -> List[List[str]]:

        # DFS

        i, j = click

        row, col = len(board), len(board[0])

        if board[i][j] == "M":

            board[i][j] = "X"

            return board

        # 计算空白快周围的雷数量

        def cal(i, j):

            res = 0

            for x in [1, -1, 0]:

                for y in [1, -1, 0]:

                    if x == 0 and y == 0: continue

                    if 0 <= i + x < row and 0 <= j + y < col and board[i + x][j + y] == "M": res += 1

            return res

        def dfs(i, j):

            num = cal(i, j)

            if num > 0:

                board[i][j] = str(num)

                return

            board[i][j] = "B"

            for x in [1, -1, 0]:

                for y in [1, -1, 0]:

                    if x == 0 and y == 0: continue

                    nxt_i, nxt_j = i + x, j + y

                    if 0 <= nxt_i < row and 0 <= nxt_j < col and board[nxt_i][nxt_j] == "E": dfs(nxt_i, nxt_j)

        dfs(i, j)

        return board

# BFS

class Solution:

    def updateBoard(self, board: List[List[str]], click: List[int]) -> List[List[str]]:

        i, j = click

        row, col = len(board), len(board[0])

        if board[i][j] == "M":

            board[i][j] = "X"

            return board

        # 计算空白块周围的雷数目

        def cal(i, j):

            res = 0

            for x in [1, -1, 0]:

                for y in [1, -1, 0]:

                    if x == 0 and y == 0: continue

                    if 0 <= i + x < row and 0 <= j + y < col and board[i + x][j + y] == "M": res += 1

            return res

        def bfs(i, j):

            queue = [(i,j)]

            while queue:

                i, j = queue.pop(0)

                num = cal(i, j)

                if num > 0:

                    board[i][j] = str(num)

                    continue

                board[i][j] = "B"

                for x in [1, -1, 0]:

                    for y in [1, -1, 0]:

                        if x == 0 and y == 0: continue

                        nxt_i, nxt_j = i + x, j + y

                        if nxt_i < 0 or nxt_i >= row or nxt_j < 0 or nxt_j >= col: continue

                        if board[nxt_i][nxt_j] == "E":

                            queue.append((nxt_i, nxt_j))

                            board[nxt_i][nxt_j] = "B"  # 主要是用于标识该点已经被访问过,防止后续重复的添加相同的‘E’点

        bfs(i, j)

        return board

关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

觉得不错的小伙伴,感谢点赞、关注加收藏哦!

欢迎关注下方GZH:阿旭算法与机器学习,共同学习交流~

相关文章:

【经典LeetCode算法题目专栏分类】【第9期】深度优先搜索DFS与并查集:括号生成、岛屿问题、扫雷游戏

《博主简介》 小伙伴们好&#xff0c;我是阿旭。专注于人工智能AI、python、计算机视觉相关分享研究。 ✌更多学习资源&#xff0c;可关注公-仲-hao:【阿旭算法与机器学习】&#xff0c;共同学习交流~ &#x1f44d;感谢小伙伴们点赞、关注&#xff01; 《------往期经典推荐--…...

字符设备驱动开发-注册-设备文件创建

一、字符设备驱动 linux系统中一切皆文件 1、应用层&#xff1a; APP1 APP2 ... fd open("led驱动的文件"&#xff0c;O_RDWR); read(fd); write(); close(); 2、内核层&#xff1a; 对灯写一个驱动 led_driver.c driver_open(); driver_read(); driver_write(…...

TrustZone之可信操作系统

有许多可信内核&#xff0c;包括商业和开源的。一个例子是OP-TEE&#xff0c;最初由ST-Ericsson开发&#xff0c;但现在是由Linaro托管的开源项目。OP-TEE提供了一个功能齐全的可信执行环境&#xff0c;您可以在OP-TEE项目网站上找到详细的描述。 OP-TEE的结构如下图所示&…...

java定义三套场景接口方案

一、背景 在前后端分离开发的背景下&#xff0c;后端java开发人员现在只需要编写接口接口。特别是使用微服务开发的接口。resful风格接口。那么一般后端接口被调用有下面三种场景。一、不需要用户登录的接口调用&#xff0c;第二、后端管理系统接口调用&#xff08;需要账号密…...

idea连接数据库,idea连接MySQL,数据库驱动下载与安装

文章目录 普通Java工程先创建JAVA工程JDBC连接数据库测试连接 可视化连接数据库数据库驱动下载与安装常用的数据库驱动下载MySQL数据库Oracle数据库SQL Server 数据库PostgreSQL数据库 下载MySQL数据库驱动JDBC连接各种数据库的连接语句MySQL数据库Oracle数据库DB2数据库sybase…...

Redis-实践知识

转自极客时间Redis 亚风 原文视频&#xff1a;https://u.geekbang.org/lesson/535?article681062 Redis最佳实践 普通KEY Redis 的key虽然可以自定义&#xff0c;但是最好遵循下面几个实践的约定&#xff1a; 格式&#xff1a;[业务名称]:[数据名]:[id] 长度不超过44字节 不…...

多维时序 | MATLAB实现SSA-CNN-SVM麻雀算法优化卷积神经网络-支持向量机多变量时间序列预测

多维时序 | MATLAB实现SSA-CNN-SVM麻雀算法优化卷积神经网络-支持向量机多变量时间序列预测 目录 多维时序 | MATLAB实现SSA-CNN-SVM麻雀算法优化卷积神经网络-支持向量机多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 多维时序 | MATLAB实现…...

leetcode160相交链表思路解析

分别让tmp1以及tmp2的结点分别先指向headA以及headB&#xff0c;当遍历完成后&#xff0c;再让tmp1以及tmp2分别指向haedB和headA反转 此处有个问题&#xff1a;为什么if判断句中写tmp1&#xff01;&#xff1d;nullptr&#xff0c;能够编译通过&#xff0c;但是写tmp1->ne…...

在线分析工具-日志优化

一、概述 针对于大日志文件&#xff0c;统计分析出日志文件的相关指标&#xff0c;帮助开发测试人员&#xff0c;优化日志打印。减少存储成本 二、日志分析指标 重复打印日志&#xff1a;统一请求reqId的重复打印日志打印最多的方法&#xff1a;检测出打印日志最多的方法…...

硬核实战!mysql 错误操作整个表全部数据后如何恢复?附解决过程、思路(百万行SQL,通过binlog日志恢复)

mysql 错误操作整个表全部数据后如何恢复&#xff1f;&#xff08;百万行SQL&#xff0c;通过binlog日志恢复&#xff09; 事件起因 事情起因&#xff1a;以为某个表里的数据都是系统配置的数据&#xff0c;没有用户数据&#xff0c;一个字段需要覆盖替换为新的url链接&#x…...

【什么是反射机制?为什么反射慢?】

✅ 什么是反射机制&#xff1f;为什么反射慢&#xff1f; ✅典型解析✅拓展知识仓✅反射常见的应用场景✅反射和Class的关系 ✅典型解析 反射机制指的是程序在运行时能够获取自身的信息。在iava中&#xff0c;只要给定类的名字&#xff0c;那么就可以通过反射机制来获得类的所有…...

PostGreSQL:货币类型

货币类型&#xff1a;money money类型存储固定小数精度的货币数字&#xff0c;小数的精度由数据库的lc_monetary设置决定。windows系统下&#xff0c;该配置项位于/data/postgresql.conf文件中&#xff0c;默认配置如下&#xff0c; lc_monetary Chinese (Simplified)_Chi…...

ESP8266网络相框采用TFT_eSPI库TJpg_Decoder库mixly库UDP库实现图片传送

用ESP8266和TFT_ESPI模块来显示图片数据。具体来说&#xff0c;我们将使用ILI9431显示器作为显示设备&#xff0c;并通过UDP协议将图片数据从发送端传输到ESP8266。最后&#xff0c;我们将解析这些数据并在TFT屏幕上显示出来。在这个过程中&#xff0c;我们将面临一些编程挑战&…...

Go 泛型发展史与基本介绍

Go 泛型发展史与基本介绍 Go 1.18版本增加了对泛型的支持&#xff0c;泛型也是自 Go 语言开源以来所做的最大改变。 文章目录 Go 泛型发展史与基本介绍一、为什么要加入泛型&#xff1f;二、什么是泛型三、泛型的来源四、为什么需要泛型五、Go 泛型设计的简史六、泛型语法6.1 …...

python 解决手机拍的书籍图片发灰的问题

老师给发的作业经常是手机拍的&#xff0c;而不是扫描&#xff0c;背景发灰&#xff0c;如果二次打印就没有看了&#xff0c;象这样&#xff1a; 如果使用photoshop 处理&#xff0c;有些地方还是扣不干净&#xff0c;不如python 做的好&#xff0c;处理后如下&#xff1a; 具体…...

【prompt一】Domain Adaptation via Prompt Learning

1.Motivation 当前的UDA方法通过对齐源和目标特征空间来学习域不变特征。这种对齐是由诸如统计差异最小化或对抗性训练等约束施加的。然而&#xff0c;这些约束可能导致语义特征结构的扭曲和类可辨别性的丧失。 在本文中&#xff0c;引入了一种新的UDA提示学习范式&#xff0…...

视频编辑与制作,添加视频封面的软件

如今&#xff0c;视频已经成为了我们生活中不可或缺的一部分&#xff0c;无论是社交媒体上的短视频&#xff0c;还是电影、电视剧&#xff0c;视频都以其独特的魅力吸引着我们的目光。而在这背后&#xff0c;视频剪辑软件功不可没。今天&#xff0c;我就为大家揭秘一款新一代的…...

Deepin更换仿Mac主题

上一篇博客说了要写一篇deepin系统的美化教程 先看效果图&#xff1a; 准备工作&#xff1a; 1.你自己 嘻嘻嘻 2.能上网的deepin15.11电脑 首先去下载主题 本次需要系统美化3部分&#xff1a;1.图标 2.光标 3.壁纸 开始之前&#xff0c;请先把你的窗口特效打开&#xff0c;…...

【Flink-Kafka-To-ClickHouse】使用 Flink 实现 Kafka 数据写入 ClickHouse

【Flink-Kafka-To-ClickHouse】使用 Flink 实现 Kafka 数据写入 ClickHouse 1&#xff09;导入相关依赖2&#xff09;代码实现2.1.resources2.1.1.appconfig.yml2.1.2.log4j.properties2.1.3.log4j2.xml2.1.4.flink_backup_local.yml 2.2.utils2.2.1.DBConn2.2.2.CommonUtils2.…...

浅谈Redis分布式锁(下)

作者简介&#xff1a;大家好&#xff0c;我是smart哥&#xff0c;前中兴通讯、美团架构师&#xff0c;现某互联网公司CTO 联系qq&#xff1a;184480602&#xff0c;加我进群&#xff0c;大家一起学习&#xff0c;一起进步&#xff0c;一起对抗互联网寒冬 自定义Redis分布式锁的…...

【Axure高保真原型】引导弹窗

今天和大家中分享引导弹窗的原型模板&#xff0c;载入页面后&#xff0c;会显示引导弹窗&#xff0c;适用于引导用户使用页面&#xff0c;点击完成后&#xff0c;会显示下一个引导弹窗&#xff0c;直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...

谷歌浏览器插件

项目中有时候会用到插件 sync-cookie-extension1.0.0&#xff1a;开发环境同步测试 cookie 至 localhost&#xff0c;便于本地请求服务携带 cookie 参考地址&#xff1a;https://juejin.cn/post/7139354571712757767 里面有源码下载下来&#xff0c;加在到扩展即可使用FeHelp…...

<6>-MySQL表的增删查改

目录 一&#xff0c;create&#xff08;创建表&#xff09; 二&#xff0c;retrieve&#xff08;查询表&#xff09; 1&#xff0c;select列 2&#xff0c;where条件 三&#xff0c;update&#xff08;更新表&#xff09; 四&#xff0c;delete&#xff08;删除表&#xf…...

k8s从入门到放弃之Ingress七层负载

k8s从入门到放弃之Ingress七层负载 在Kubernetes&#xff08;简称K8s&#xff09;中&#xff0c;Ingress是一个API对象&#xff0c;它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress&#xff0c;你可…...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速&#xff08;高性能&#xff09;的 Web 框架&#xff0c;用于构建 API&#xff0c;支持 Python 3.6。它基于标准 Python 类型提示&#xff0c;易于学习且功能强大。以下是一个完整的 FastAPI 入门教程&#xff0c;涵盖从环境搭建到创建并运行一个简单的…...

CocosCreator 之 JavaScript/TypeScript和Java的相互交互

引擎版本&#xff1a; 3.8.1 语言&#xff1a; JavaScript/TypeScript、C、Java 环境&#xff1a;Window 参考&#xff1a;Java原生反射机制 您好&#xff0c;我是鹤九日&#xff01; 回顾 在上篇文章中&#xff1a;CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...

12.找到字符串中所有字母异位词

&#x1f9e0; 题目解析 题目描述&#xff1a; 给定两个字符串 s 和 p&#xff0c;找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义&#xff1a; 若两个字符串包含的字符种类和出现次数完全相同&#xff0c;顺序无所谓&#xff0c;则互为…...

大学生职业发展与就业创业指导教学评价

这里是引用 作为软工2203/2204班的学生&#xff0c;我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要&#xff0c;而您认真负责的教学态度&#xff0c;让课程的每一部分都充满了实用价值。 尤其让我…...

【Nginx】使用 Nginx+Lua 实现基于 IP 的访问频率限制

使用 NginxLua 实现基于 IP 的访问频率限制 在高并发场景下&#xff0c;限制某个 IP 的访问频率是非常重要的&#xff0c;可以有效防止恶意攻击或错误配置导致的服务宕机。以下是一个详细的实现方案&#xff0c;使用 Nginx 和 Lua 脚本结合 Redis 来实现基于 IP 的访问频率限制…...

C++ 设计模式 《小明的奶茶加料风波》

&#x1f468;‍&#x1f393; 模式名称&#xff1a;装饰器模式&#xff08;Decorator Pattern&#xff09; &#x1f466; 小明最近上线了校园奶茶配送功能&#xff0c;业务火爆&#xff0c;大家都在加料&#xff1a; 有的同学要加波霸 &#x1f7e4;&#xff0c;有的要加椰果…...