当前位置: 首页 > news >正文

多维时序 | MATLAB实现BiTCN-Multihead-Attention多头注意力机制多变量时间序列预测

多维时序 | MATLAB实现BiTCN-Multihead-Attention多头注意力机制多变量时间序列预测

目录

    • 多维时序 | MATLAB实现BiTCN-Multihead-Attention多头注意力机制多变量时间序列预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述

4

6
7
8
9

基本介绍

多维时序 | MATLAB实现BiTCN-Multihead-Attention多头注意力机制多变量时间序列预测。

模型描述

MATLAB实现BiTCN-Multihead-Attention多头注意力机制多变量时间序列预测,用于处理时间序列数据;适用平台:Matlab 2023及以上
1.data为数据集,格式为excel,4个输入特征,1个输出特征,考虑历史特征的影响,多变量时间序列预测;
2.主程序文件,运行即可;
3.命令窗口输出R2、MAE、MAPE、MSE和MBE,可在下载区获取数据和程序内容;
注意程序和数据放在一个文件夹,运行环境为Matlab2023b及以上。

BiTCN 引入了双向时间卷积,结合了时间序列数据在过去和未来的信息,使模型能够更好地捕获时间序列中的时序模式。传统的单向卷积只关注局部上下文信息,而双向卷积可以从多个方向捕捉时间序列的重要特征。多头自注意力机制使得模型能够更灵活地对不同时间步的输入信息进行加权。这有助于模型更加集中地关注对预测目标有更大影响的时间点。​自注意力机制还有助于处理时间序列中长期依赖关系,提高了模型在预测时对输入序列的全局信息的感知。

在这里插入图片描述

程序设计

  • 完整程序和数据获取方式1:同等价值程序兑换;
  • 完整程序和数据获取方式2:私信博主回复MATLAB实现BiTCN-Multihead-Attention多头注意力机制多变量时间序列预测获取。

%---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度
%---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);
%---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
————————————————
版权声明:本文为CSDN博主「机器学习之心」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/kjm13182345320/article/details/130471154

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

相关文章:

多维时序 | MATLAB实现BiTCN-Multihead-Attention多头注意力机制多变量时间序列预测

多维时序 | MATLAB实现BiTCN-Multihead-Attention多头注意力机制多变量时间序列预测 目录 多维时序 | MATLAB实现BiTCN-Multihead-Attention多头注意力机制多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 多维时序 | MATLAB实现BiTCN-Multihea…...

Qt的简单游戏实现提供完整代码

文章目录 1 项目简介2 项目基本配置2.1 创建项目2.2 添加资源 3 主场景3.1 设置游戏主场景配置3.2 设置背景图片3.3 创建开始按钮3.4 开始按钮跳跃特效实现3.5 创建选择关卡场景3.6 点击开始按钮进入选择关卡场景 4 选择关卡场景4.1场景基本设置4.2 背景设置4.3 创建返回按钮4.…...

SpringMVC之文件的下载

系列文章目录 提示:这里可以添加系列文章的所有文章的目录,目录需要自己手动添加 SpringMVC之文件的下载 提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 系列文章目录前言一、文件下载实现…...

计算机组成原理第6章-(算术运算)【下】

移位运算 对于有符号数的移位称为算术移位,对于无符号数的移位称为逻辑移位。 算术移位规则【极其重要】 对于正数的算术移位,且不管是何种机器数【原码、反码、补码】,移位后出现的空位全部填0。 而对于负数的算术移位,机器数不同,移位后的规则也不同。 对于负数的原…...

【开题报告】基于微信小程序的校园资讯平台的设计与实现

1.选题背景与意义 随着移动互联网的快速发展,微信成为了人们日常生活中不可或缺的工具之一。在校园生活中,学生们对于校园资讯的获取和交流需求也越来越高。然而,传统的校园资讯发布方式存在信息不及时、传播范围有限等问题,无法…...

VUE前端导出文件之file-saver插件

VUE前端导出文件之file-saver插件 安装 npm install file-saver --save # 如使用TS开发,可安装file-saver的TypeScript类型定义 npm install types/file-saver --save-dev如果需要保存大于 blob 大小限制的非常大的文件,或者没有 足够的 RAM&#xff0…...

【Earth Engine】协同Sentinel-1/2使用随机森林回归实现高分辨率相对财富(贫困)制图

目录 1 简介与摘要2 思路3 效果预览4 代码思路5 完整代码6 后记 1 简介与摘要 最近在做一些课题,需要使用Sentinel-1/2进行机器学习制图。 然后想着总结一下相关数据和方法,就花半小时写了个代码。 然后再花半小时写下这篇博客记录一下。 因为基于多次拍…...

C++ 检测 是不是 com组件 的办法 已解决

在日常开发中,遇到动态库和 com组件库的调用 无法区分。检测是否com组件的办法 在头部文件,引入文件 如果能编译成功说明是 com组件,至于动态库如何引入,还在观察中 最简单办法 regsvr32 TerraExplorerX.dll 是com 组件 regs…...

linux buffer的回写的触发链路

mark_buffer_dirty中除了会标记dirty到buffer_head->state、page.flag、folio->mapping->i_pages外,还会调用inode所在文件系统的dirty方法(inode->i_sb->s_op->dirty_inode)。然后为inode创建一个它所在memory group的wri…...

Lambda表达式超详解

目录 背景 Lambda表达式的用法 函数式接口 Lambda表达式的基本使用 语法精简 变量捕获 匿名内部类 匿名内部类中的变量捕获 Lambda的变量捕获 Lambda表达式在类集中的使用 Collection接口 List接口 Map接口 总结 背景 Lambda表达式是Java SE 8中的一个重要的新特性.…...

西门子博途与菲尼克斯无线蓝牙模块通讯

菲尼克斯无线蓝牙模块 正常运行时,可以使用基站控制字0发送00E0(得到错误代码命令) 正常运行时,可以使用基站控制字0发送00E0(得到错误代码命令)得到各个无线I/O是否连 接的信号(状态字IN word 1的第2、6、10位) 小车1连接状态 小车2连接状态 小车3连接状态 1#小车自…...

vue2 之 实现pdf电子签章

一、前情提要 1. 需求 仿照e签宝,实现pdf电子签章 > 拿到pdf链接,移动章的位置,获取章的坐标 技术 : 使用fabric pdfjs-dist vuedraggable 2. 借鉴 一位大佬的代码仓亏 : 地址 一位大佬写的文章 :地址 3. 优化 在大佬的代码…...

什么是MVC?MVC框架的优势和特点

目录 一、什么是MVC 二、MVC模式的组成部分和工作原理 1、模型(Model) 2、视图(View) 3、控制器(Controller) 三、MVC模式的工作过程如下: 用户发送请求,请求由控制器处理。 …...

主从复制mysql-replication | Replication故障排除

主从复制mysql-replication 准备环境 #防火墙 selinux systemctl stop firewalld --now &&setenforce 0 #修改主机名:hostnamectl set-hostname 名字 tip:vim /etc/sysconfig/network-scripts/ifcfg-ens33 BOOTPRTOTstatic IPADDR192.168.100.…...

基于Java SSM框架实现教学质量评价评教系统项目【项目源码+论文说明】计算机毕业设计

基于java的SSM框架实现教学质量评价评教系统演示 摘要 随着科学技术的飞速发展,社会的方方面面、各行各业都在努力与现代的先进技术接轨,通过科技手段来提高自身的优势,教学质量评价系统当然也不能排除在外。教学质量评价系统是以实际运用为…...

03|模型I/O:输入提示、调用模型、解析输出

03|模型I/O:输入提示、调用模型、解析输出 从这节课开始,我们将对 LangChain 中的六大核心组件一一进行详细的剖析。 模型,位于 LangChain 框架的最底层,它是基于语言模型构建的应用的核心元素,因为所谓 …...

springcloud-gateway-2-鉴权

目录 一、跨域安全设置 二、GlobalFilter实现全局的过滤与拦截。 三、GatewayFilter单个服务过滤器 1、原理-官方内置过滤器 2、自定义过滤器-TokenAuthGatewayFilterFactory 3、完善TokenAuthGatewayFilterFactory的功能 4、每一个服务编写一个或多个过滤器&#xff0c…...

实现一个最简单的内核

更好的阅读体验,请点击 YinKai s Blog | 实现一个最简单的内核。 ​ 这篇文章带大家实现一个最简单的操作系统内核—— Hello OS。 PC 机的引导流程 ​ 我们这里将借助 Ubuntu Linux 操纵系统上的 GRUB 引导程序来引导我们的 Hello OS。 ​ 首先我们得了解一下&a…...

2024华为OD机试真题指南宝典—持续更新(JAVAPythonC++JS)【彻底搞懂算法和数据结构—算法之翼】

PC端可直接搜索关键词 快捷键:CtrlF 年份关键字、题目关键字等等 注意看本文目录-快速了解本专栏 文章目录 🐱2024年华为OD机试真题(马上更新)🐹2023年华为OD机试真题(更新中)🐶新…...

【12.23】转行小白历险记-算法02

不会算法的小白不是好小白,可恶还有什么可以难倒我这个美女的,不做花瓶第二天! 一、螺旋矩阵 59. 螺旋矩阵 II - 力扣(LeetCode) 1.核心思路:确定循环的路线,左闭右开循环,思路简…...

零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?

一、核心优势:专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发,是一款收费低廉但功能全面的Windows NAS工具,主打“无学习成本部署” 。与其他NAS软件相比,其优势在于: 无需硬件改造:将任意W…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】

微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

Java多线程实现之Callable接口深度解析

Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...

华硕a豆14 Air香氛版,美学与科技的馨香融合

在快节奏的现代生活中,我们渴望一个能激发创想、愉悦感官的工作与生活伙伴,它不仅是冰冷的科技工具,更能触动我们内心深处的细腻情感。正是在这样的期许下,华硕a豆14 Air香氛版翩然而至,它以一种前所未有的方式&#x…...

Linux 中如何提取压缩文件 ?

Linux 是一种流行的开源操作系统,它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间,使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的,要在 …...

毫米波雷达基础理论(3D+4D)

3D、4D毫米波雷达基础知识及厂商选型 PreView : https://mp.weixin.qq.com/s/bQkju4r6med7I3TBGJI_bQ 1. FMCW毫米波雷达基础知识 主要参考博文: 一文入门汽车毫米波雷达基本原理 :https://mp.weixin.qq.com/s/_EN7A5lKcz2Eh8dLnjE19w 毫米波雷达基础…...

Unity VR/MR开发-VR开发与传统3D开发的差异

视频讲解链接:【XR马斯维】VR/MR开发与传统3D开发的差异【UnityVR/MR开发教程--入门】_哔哩哔哩_bilibili...

DeepSeek越强,Kimi越慌?

被DeepSeek吊打的Kimi,还有多少人在用? 去年,月之暗面创始人杨植麟别提有多风光了。90后清华学霸,国产大模型六小虎之一,手握十几亿美金的融资。旗下的AI助手Kimi烧钱如流水,单月光是投流就花费2个亿。 疯…...

嵌入式面试常问问题

以下内容面向嵌入式/系统方向的初学者与面试备考者,全面梳理了以下几大板块,并在每个板块末尾列出常见的面试问答思路,帮助你既能夯实基础,又能应对面试挑战。 一、TCP/IP 协议 1.1 TCP/IP 五层模型概述 链路层(Link Layer) 包括网卡驱动、以太网、Wi‑Fi、PPP 等。负责…...

Pandas 可视化集成:数据科学家的高效绘图指南

为什么选择 Pandas 进行数据可视化? 在数据科学和分析领域,可视化是理解数据、发现模式和传达见解的关键步骤。Python 生态系统提供了多种可视化工具,如 Matplotlib、Seaborn、Plotly 等,但 Pandas 内置的可视化功能因其与数据结…...