智能优化算法应用:基于鹈鹕算法3D无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于鹈鹕算法3D无线传感器网络(WSN)覆盖优化 - 附代码
文章目录
- 智能优化算法应用:基于鹈鹕算法3D无线传感器网络(WSN)覆盖优化 - 附代码
- 1.无线传感网络节点模型
- 2.覆盖数学模型及分析
- 3.鹈鹕算法
- 4.实验参数设定
- 5.算法结果
- 6.参考文献
- 7.MATLAB代码
摘要:本文主要介绍如何用鹈鹕算法进行3D无线传感器网(WSN)覆盖优化。
1.无线传感网络节点模型
本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)≤Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xn−xp)2+(yn−yp)2+(zn−zp)2为点和之间的欧式距离。
2.覆盖数学模型及分析
现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l m∗n∗l个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xi−x)2+(yi−y)2+(zi−z)2(3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)≤r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=m∗n∗l∑Pcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。
3.鹈鹕算法
鹈鹕算法原理请参考:https://blog.csdn.net/u011835903/article/details/124809854
鹈鹕算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1−CoverRatio)=argmin(1−m∗n∗l∑Pcov)(6)
4.实验参数设定
无线传感器覆盖参数设定如下:
%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径
鹈鹕算法参数如下:
%% 设定鹈鹕优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点
5.算法结果


从结果来看,覆盖率在优化过程中不断上升。表明鹈鹕算法对覆盖优化起到了优化的作用。
6.参考文献
[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.
7.MATLAB代码
相关文章:
智能优化算法应用:基于鹈鹕算法3D无线传感器网络(WSN)覆盖优化 - 附代码
智能优化算法应用:基于鹈鹕算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于鹈鹕算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.鹈鹕算法4.实验参数设定5.算法结果6.参考文献7.MA…...
10:IIC通信
1:IIC通信 I2C总线(Inter IC BUS) 是由Philips公司开发的一种通用数据总线,应用广泛,下面是一些指标参数: 两根通信线:SCL(Serial Clock,串行时钟线)、SDA&a…...
互联网上门洗衣洗鞋小程序优势有哪些?
互联网洗鞋店小程序相较于传统洗鞋方式,具有以下优势; 1. 便捷性:用户只需通过手机即可随时随地下单并查询,省去了许多不必要的时间和精力。学生们无需走出宿舍或校园,就能轻松预约洗鞋并取件。 2. 精准定位࿱…...
Java中如何优雅地根治null值引起的Bug问题
1. Java对象为null会引发的问题 NullPointerException:当你尝试调用或访问一个null对象的属性或方法时,Java会抛出NullPointerException异常。例如,如果你有一个名为person的变量,它被设置为null,然后你尝试调用perso…...
C# WPF上位机开发(子窗口通知父窗口更新进度)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing 163.com】 这两天在编写代码的时候,正好遇到一个棘手的问题,解决之后感觉挺有意义的,所以先用blog记录一下,后…...
XUbuntu22.04之跨平台容器格式工具:MKVToolNix(二百零三)
简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 优质专栏:多媒…...
vue中的生命周期和VueComponent实例对象
生命周期 生命周期又叫生命周期钩子,生命周期函数 生命周期是,Vue在关键的时刻帮我们调用的一些特殊名字的函数 生命周期的this指向vm或者组件实例对象 mounted会将初始化的Dom挂载到页面上 <template><div class"hello"><…...
Hooked协议掀起WEB3新浪潮
随着区块链技术和加密货币的兴起,币圈已经成为全球范围内的一个热门领域。在这个充满机遇与挑战的行业中,Hook机制正逐渐成为一种重要的技术手段,为投资者、开发者以及相关机构提供了更多的选择和可能性。本文将详细介绍币圈中的Hook机制&…...
【图文教程】windows 下 MongoDB 介绍下载安装配置
文章目录 介绍MySQL 之间的区别和适用场景差异数据模型:查询语言:可扩展性:数据一致性: 下载安装环境变量配置 介绍 MongoDB 是一种开源的、面向文档的 NoSQL 数据库管理系统。它使用灵活的文档模型来存储数据,这意味…...
算法复杂度-BigO表示法
1.时间复杂度--大O表示法 算法的渐进时间复杂度,T(n)O(f(n)) T(n)表示算法的渐进时间复杂度 f(n)表示代码执行的次数 O()表示正比例关系 2.常用的时间复杂度量级 3.举例 (1&am…...
测试理论知识五:功能测试、系统测试、验收测试、安装测试、测试的计划与控制
模块测试的目的是发现程序模块与其接口规格说明之间的不一致。 功能测试的目的是为了证明程序未能符合其外部规格说明。 系统测试的目的是为了证明软件产品与其初始目标不一致。 1. 功能测试 功能测试是一个试图发现程序与其外部规格说明之间存在不一致的过程。功能测试通…...
太阳能爆闪警示灯
适用场所: 适用于高压线,塔吊,路政,船舶,种植,塔机,航海航道等场所起警示作用。 产品特点: 光控无开关,白天不闪,昏暗环境自动闪烁,无需手动操作,省时省事; 采用红色LED作光源,亮度高&#…...
怎么为pdf文件添加水印?
怎么为pdf文件添加水印?PDF是一种很好用的文件格式,这种格式能够很有效的保护我们的文件,但有时可能还会被破解,这种时候在PDF上添加水印就是比较好的方法。 综上所述,PDF是保密性很强的文件,但添加水印能够…...
基于ssm医药信息管理系统论文
基于SSM的医药信息管理系统的设计与实现 摘要 当下,正处于信息化的时代,许多行业顺应时代的变化,结合使用计算机技术向数字化、信息化建设迈进。以前相关行业对于医药信息的管理和控制,采用人工登记的方式保存相关数据ÿ…...
Ceph存储体系架构?
Ceph体系架构主要由RADOS和RADOS GW和RBD以及CephFS构成。 RADOS(Reliable, Autonomic Distributed Object Store)是Ceph的底层核心,RADOS本身也是分布式存储系统,CEPH所有的存储功能都是基于RADOS实现。RADOS由两个组件组成&…...
详解现实世界资产(RWAs)
区块链中的现实世界资产(RWAs)是代表实际和传统金融资产的数字通证,如货币、大宗商品、股票和债券。 实际世界资产(RWA)的通证化是区块链行业中最大的市场机会之一,潜在市场规模可达数万万亿美元。理论上&…...
Windows漏洞利用开发——利用ROP绕过DEP保护
实验6 Windows漏洞利用开发 6.1实验名称 Windows漏洞利用开发 6.2实验目的 学习windows漏洞利用开发,使用kali linux相关工具对windows内目标程序进行漏洞利用 6.3实验步骤及内容 第三阶段:利用ROP绕过DEP保护 了解DEP保护理解构造ROP链从而绕过DEP…...
合并两个有序链表算法(leetcode第21题)
题目描述: 将两个升序链表合并为一个新的 升序 链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。 示例 1:输入:l1 [1,2,4], l2 [1,3,4] 输出:[1,1,2,3,4,4] 示例 2:输入:l1 [], l2 [] 输…...
二维码初体验 com.google.zxing 实现续 - web api封装
文章目录 一、概述二、最终效果三、源码结构四、完整代码 一、概述 在 二维码初体验 com.google.zxing 实现 我们实现了二维码的生成,但是大部分情况下,二维码的相关功能是作为API接口来提供服务的。 我们下面便演示在springboot、Knife4j下封装api接口…...
Hadoop入门学习笔记——四、MapReduce的框架配置和YARN的部署
视频课程地址:https://www.bilibili.com/video/BV1WY4y197g7 课程资料链接:https://pan.baidu.com/s/15KpnWeKpvExpKmOC8xjmtQ?pwd5ay8 Hadoop入门学习笔记(汇总) 目录 四、MapReduce的框架配置和YARN的部署4.1. 配置MapReduce…...
7.4.分块查找
一.分块查找的算法思想: 1.实例: 以上述图片的顺序表为例, 该顺序表的数据元素从整体来看是乱序的,但如果把这些数据元素分成一块一块的小区间, 第一个区间[0,1]索引上的数据元素都是小于等于10的, 第二…...
基于大模型的 UI 自动化系统
基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...
SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...
令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍
文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结: 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析: 实际业务去理解体会统一注…...
[Java恶补day16] 238.除自身以外数组的乘积
给你一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法,且在 O(n) 时间复杂度…...
项目部署到Linux上时遇到的错误(Redis,MySQL,无法正确连接,地址占用问题)
Redis无法正确连接 在运行jar包时出现了这样的错误 查询得知问题核心在于Redis连接失败,具体原因是客户端发送了密码认证请求,但Redis服务器未设置密码 1.为Redis设置密码(匹配客户端配置) 步骤: 1).修…...
均衡后的SNRSINR
本文主要摘自参考文献中的前两篇,相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程,其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt 根发送天线, n r n_r nr 根接收天线的 MIMO 系…...
push [特殊字符] present
push 🆚 present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中,push 和 present 是两种不同的视图控制器切换方式,它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...
STM32---外部32.768K晶振(LSE)无法起振问题
晶振是否起振主要就检查两个1、晶振与MCU是否兼容;2、晶振的负载电容是否匹配 目录 一、判断晶振与MCU是否兼容 二、判断负载电容是否匹配 1. 晶振负载电容(CL)与匹配电容(CL1、CL2)的关系 2. 如何选择 CL1 和 CL…...
加密通信 + 行为分析:运营商行业安全防御体系重构
在数字经济蓬勃发展的时代,运营商作为信息通信网络的核心枢纽,承载着海量用户数据与关键业务传输,其安全防御体系的可靠性直接关乎国家安全、社会稳定与企业发展。随着网络攻击手段的不断升级,传统安全防护体系逐渐暴露出局限性&a…...
