当前位置: 首页 > news >正文

在Linux上安装CLion

本教程将指导你如何在Linux系统上安装CLion,下载地址为:https://download.jetbrains.com.cn/cpp/CLion-2022.3.3.tar.gz。以下是详细的安装步骤:

步骤1:下载CLion

首先,你需要使用wget命令从提供的URL下载CLion的tar.gz包。

wget https://download.jetbrains.com.cn/cpp/CLion-2022.3.3.tar.gz

这个命令会将CLion的安装包下载到当前目录。

步骤2:解压下载的文件

下载完成后,使用tar命令解压缩下载的tar.gz文件。

tar -xzf CLion-2022.3.3.tar.gz

执行此命令后,会在当前目录下创建一个名为CLion-2022.3.3的目录,其中包含了CLion的可执行文件和相关资源。

步骤3:赋予执行权限

为了能够运行CLion,你需要给clion.sh脚本赋予执行权限。

chmod +x CLion-2022.3.3/bin/clion.sh

这个命令会给CLion-2022.3.3/bin/clion.sh文件添加执行权限。

步骤4:启动CLion

现在你可以通过运行clion.sh脚本来启动CLion。

cd CLion-2022.3.3/bin
./clion.sh

执行上述命令后,CLion将会启动。

注意事项

  • 第一次运行CLion时,你可能需要激活你的许可证。你可以选择使用 JetBrains 账户登录,或者输入你的许可证密钥。
  • 如果你想在桌面上创建一个启动CLion的快捷方式,可以创建一个.desktop文件。具体方法可以参考官方文档或相关教程。

以上就是在Linux上安装CLion的基本步骤。如果你在安装过程中遇到任何问题,建议查阅JetBrains官方文档或在线帮助。

相关文章:

在Linux上安装CLion

本教程将指导你如何在Linux系统上安装CLion,下载地址为:https://download.jetbrains.com.cn/cpp/CLion-2022.3.3.tar.gz。以下是详细的安装步骤: 步骤1:下载CLion 首先,你需要使用wget命令从提供的URL下载CLion的tar…...

R语言贝叶斯网络模型、INLA下的贝叶斯回归、R语言现代贝叶斯统计学方法、R语言混合效应(多水平/层次/嵌套)模型

目录 ㈠ 基于R语言的贝叶斯网络模型的实践技术应用 ㈡ R语言贝叶斯方法在生态环境领域中的高阶技术应用 ㈢ 基于R语言贝叶斯进阶:INLA下的贝叶斯回归、生存分析、随机游走、广义可加模型、极端数据的贝叶斯分析 ㈣ 基于R语言的现代贝叶斯统计学方法(贝叶斯参数估…...

多维时序 | Matlab实现PSO-GCNN粒子群优化分组卷积神经网络多变量时间序列预测

多维时序 | Matlab实现PSO-GCNN粒子群优化分组卷积神经网络多变量时间序列预测 目录 多维时序 | Matlab实现PSO-GCNN粒子群优化分组卷积神经网络多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 Matlab实现PSO-GCNN粒子群优化分组卷积神经网络多…...

Oracle 学习(1)

Oracle简介 Oracle是殷墟(yīn Xu)出土的甲骨文(oracle bone inscriptions)的英文翻译的第一个单词,在英语里是“神谕”的意思。Oracle公司成立于1977年,总部位于美国加州,是世界领先的信息管…...

华为HCIA认证H12-811题库新增

801、[单选题]178/832、在系统视图下键入什么命令可以切换到用户视图? A quit B souter C system-view D user-view 试题答案:A 试题解析:在系统视图下键入quit命令退出到用户视图。因此答案选A。 802、[单选题]“网络管理员在三层交换机上创建了V…...

Nginx Unit 1.27.0 发布

目录 介绍 更新内容 将 HTTP 请求重定向到 HTTPS 为纯路径 URI 提供可配置的文件名 完整的更新日志 其他 平台更新 介绍 Nginx Unit 是一个动态应用服务器,能够与 Nginx Plus 和 Nginx 开源版并行或独立运行。Nginx Unit 支持 RESTful JSON API,…...

【影像组学入门百问】#32—#34

#32-影像组学研究过程中,图像重采样参 数怎么选择? 在影像组学研究过程中,选择合适的图像重采样参数对于保证分析质量和准确性至关重要。以下是在选择图像重采样参数时需要考虑的一些建议: 1.目标分辨率:首先&#…...

YOLOv5代码解析——yolo.py

yolo.py的主要功能是构建模型。 1、最主要的函数是parse_model,用于解析yaml文件,并根据解析的结果搭建网络。这个函数的注释如下: def parse_model(d, ch): # model_dict, input_channels(3)"""解析模型文件,并…...

4种feature classification在代码的实现上是怎么样的?Linear / MLP / CNN / Attention-Based Heads

具体的分类效果可以看:【Arxiv 2023】Diffusion Models Beat GANs on Image Classification 1、线性分类器 (Linear, A) 使用一个简单的线性层,通常与一个激活函数结合使用。 import torch.nn as nnclass LinearClassifier(nn.Module):def __init__(se…...

最新Unity DOTS Physics物理引擎碰撞事件处理

最近DOTS发布了正式的版本,同时基于DOTS的理念实现了一套高性能的物理引擎,今天我们给大家分享和介绍一下这个物理引擎的碰撞事件处理以及核心相关概念。 Unity.Physics物理引擎的主要流程与Pipeline Unity.Physics物理引擎做仿真迭代计算的时候主要通过以下步骤来…...

springboot集成websocket全全全!!!

一、界面展示 二、前置了解 1.什么是websocket WebSocket是一种在单个TCP连接上进行全双工通信的持久化协议。 全双工协议就是客户端可以给我们服务器发数据 服务器也可以主动给客户端发数据。 2.为什么有了http协议 还要websocket 协议 http协议是一种无状态,非…...

SpringMVC:整合 SSM 中篇

文章目录 SpringMVC - 04整合 SSM 中篇一、优化二、总结三、说明注意: SpringMVC - 04 整合 SSM 中篇 一、优化 在 spring-dao.xml 中配置 dao 接口扫描,可以动态地实现 dao 接口注入到 Spring 容器中。 优化前:手动创建 SqlSessionTempl…...

oracle即时客户端(Instant Client)安装与配置

之前的文章记录了oracle客户端和服务端的下载与安装,内容参见: 在Windows中安装Oracle_windows安装oracle 如果不想安装oracle客户端(或者是电脑因为某些原因无法安装oracle客户端),还想能够连接oracle远程服务&#…...

POP3协议详解

基本介绍 POP3是一种用于从邮件服务器获取电子邮件的协议。它允许邮件客户端连接到邮件服务器,检索服务器上存储的邮件,并将邮件下载到客户端设备上。POP3的工作原理如下: 连接和身份验证: 邮件客户端通过TCP/IP连接到邮件服务器…...

电子病历编辑器源码,提供电子病历在线制作、管理和使用的一体化电子病历解决方案

概述: 电子病历是指医务人员在医疗活动过程中,使用医疗机构信息系统生成的文字、符号、图表、图形、数据、影像等数字化信息,并能实现存储、管理、传输和重现的医疗记录,是病历的一种记录形式。 医院通过电子病历以电子化方式记录患者就诊的信息,包括&…...

WT2605C高品质音频蓝牙语音芯片:外接功放实现双声道DAC输出的优势

在音频处理领域,双声道DAC输出能够提供更为清晰、逼真的音效,增强用户的听觉体验。针对这一需求,唯创知音的WT2605C高品质音频蓝牙语音芯片,通过外接功放实现双声道DAC输出,展现出独特的应用优势。 一、高品质音频处理…...

IntelliJ IDEA 2023.3 最新版如何如何配置?IntelliJ IDEA 2023.3 最新版试用方法

🌷🍁 博主猫头虎(🐅🐾)带您 Go to New World✨🍁 🦄 博客首页——🐅🐾猫头虎的博客🎐 🐳 《面试题大全专栏》 🦕 文章图文…...

如何查看内存卡使用记录-查看的设备有:U盘、移动硬盘、MP3、SD卡等-供大家学习研究参考

主要功能 USB Viewer(USB移动存储设备使用记录查看器)可用于查看本机的USB移动存储设备使用记录。可查看的设备有:U盘、移动硬盘、MP3、SD卡……等。   可用于兵器、航空、航天、政府、军队等对保密要求较高的单位,可在计算机保…...

九、W5100S/W5500+RP2040之MicroPython开发<HTTPOneNET示例>

文章目录 1. 前言2. 平台操作流程2.1 创建设备2.2 创建数据流模板 3. WIZnet以太网芯片4. 示例讲解以及使用4.1 程序流程图4.2 测试准备4.3 连接方式4.4 相关代码4.5 烧录验证 5. 注意事项6. 相关链接 1. 前言 在这个智能硬件和物联网时代,MicroPython和树莓派PICO正…...

在 Laravel 中,清空缓存大全

在 Laravel 中,清空缓存通常涉及到清除应用程序中的缓存文件和数据库查询缓存。以下是一些常用的清空缓存方法: 1. 清除路由缓存: Laravel 的路由缓存可以提高应用程序的性能,但在开发过程中,你可能需要频繁地更改路…...

[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?

🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里&#xf…...

Cesium1.95中高性能加载1500个点

一、基本方式&#xff1a; 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖

在前面的练习中&#xff0c;每个页面需要使用ref&#xff0c;onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入&#xff0c;需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施&#xff0c;由雇主和个人按一定比例缴纳保险费&#xff0c;建立社会医疗保险基金&#xff0c;支付雇员医疗费用的一种医疗保险制度&#xff0c; 它是促进社会文明和进步的…...

定时器任务——若依源码分析

分析util包下面的工具类schedule utils&#xff1a; ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类&#xff0c;封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz&#xff0c;先构建任务的 JobD…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解

本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...

C++.OpenGL (10/64)基础光照(Basic Lighting)

基础光照(Basic Lighting) 冯氏光照模型(Phong Lighting Model) #mermaid-svg-GLdskXwWINxNGHso {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-GLdskXwWINxNGHso .error-icon{fill:#552222;}#mermaid-svg-GLd…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/

使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题&#xff1a;docker pull 失败 网络不同&#xff0c;需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...