深度学习中用来训练的train.py 探究学习2.0( 数据预处理)
数据预处理
下列代码为train.py中常见的一些数据处理方法
train_transform = transforms.Compose([transforms.Resize((224, 224)),transforms.RandomVerticalFlip(),# 随机旋转,-45度到45度之间随机选transforms.RandomRotation(45),# 从中心开始裁剪transforms.CenterCrop(224),# 随机水平翻转 选择概率值为 p=0.5transforms.RandomHorizontalFlip(p=0.5),# 随机垂直翻转transforms.RandomVerticalFlip(p=0.5),# 参数:亮度、对比度、饱和度、色相transforms.ColorJitter(brightness=0.2, contrast=0.1, saturation=0.1, hue=0.1),# 转为3通道灰度图 R=G=B 概率设定0.025transforms.RandomGrayscale(p=0.025),transforms.ToTensor(),transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
1.transforms.Resize
在下述示例中,我们首先使用PIL库的Image.open方法读取了一张图片。然后,我们使用transforms.Resize(500)定义了一个resize操作,将图片的短边缩放至500像素,同时保持长宽比不变。最后,我们将resize操作应用到图片上,得到了resize后的图片resized_image。最后一步是使用show方法显示resize后的图片。
from PIL import Image
from torchvision import transforms# 读取图片
image = Image.open('image.jpg')# 定义transforms.Resize操作
resize = transforms.Resize(500)# 对图片进行resize操作
resized_image = resize(image)# 显示resize后的图片
resized_image.show()


将resize = transforms.Resize(500) 改为 resize = transforms.Resize((500,500))
2. transforms.RandomVerticalFlip
transforms.RandomVerticalFlip是一个PyTorch中的数据预处理方法,用于垂直翻转图像。它可以根据给定的概率p,以p的概率对图像进行垂直翻转,以1-p的概率保持原始图像不变。
以下是一个使用transforms.RandomVerticalFlip的示例代码:
import torch
from torchvision import transforms
from PIL import Image# 加载图像
image = Image.open('image.jpg')# 定义数据预处理方法
transform = transforms.Compose([transforms.RandomVerticalFlip(p=0.5)
])# 对图像进行数据预处理
transformed_image = transform(image)# 显示预处理后的图像
transformed_image.show()
在上面的示例中,我们首先加载了一张图像,然后定义了一个transforms.Compose对象,其中包含了transforms.RandomVerticalFlip方法。接下来,我们将图像传递给transform对象,它会根据给定的概率p对图像进行垂直翻转。最后,我们显示了预处理后的图像。

3. transforms.RandomHorizontalFlip
transforms.RandomHorizontalFlip是torchvision.transforms中的一个类,用于对图像进行随机水平翻转的操作。它可以将图像水平翻转,即左右翻转。这个操作可以增加数据的多样性,提高模型的泛化能力。
下面是一个使用transforms.RandomHorizontalFlip的示例代码:
import torchvision.transforms as transforms
from PIL import Image# 创建一个RandomHorizontalFlip对象
transform = transforms.RandomHorizontalFlip(p=0.5)# 加载图像
image = Image.open('image.jpg')# 对图像进行水平翻转
flipped_image = transform(image)# 显示原始图像和翻转后的图像
image.show()
flipped_image.show()
在上面的代码中,我们首先导入了transforms模块和Image模块。然后,我们创建了一个RandomHorizontalFlip对象,并设置了翻转的概率为0.5。接下来,我们加载了一张图像,并使用transform对图像进行水平翻转操作。最后,我们分别显示了原始图像和翻转后的图像。

4. transforms.RandomRotation 随机旋转
transforms.RandomRotation是PyTorch中的一个图像变换操作,用于对图像进行随机旋转。它可以将图像按照一定的角度范围进行随机旋转,增加数据的多样性和鲁棒性。
以下是transforms.RandomRotation的使用示例:
import torchvision.transforms as transforms
from PIL import Image# 创建一个RandomRotation对象,设置旋转角度范围为±30度
random_rotation = transforms.RandomRotation(30)# 加载图像
image = Image.open('image.jpg')# 对图像进行随机旋转
rotated_image = random_rotation(image)# 显示旋转后的图像
rotated_image.show()
在上述示例中,我们首先导入了transforms模块和Image类。然后,我们创建了一个RandomRotation对象,并设置旋转角度范围为±30度。接下来,我们加载了一张图像,并使用random_rotation对图像进行随机旋转。最后,我们显示了旋转后的图像。

5. transforms.CenterCrop 中心裁剪
transforms.CenterCrop是PyTorch中的一个图像变换函数,用于对图像进行中心裁剪。它可以根据给定的尺寸对图像进行裁剪,并将图像的中心部分保留下来。
以下是一个使用transforms.CenterCrop的示例代码:
import torchvision.transforms as transforms
from PIL import Image# 加载图像
image = Image.open('image.jpg')# 定义裁剪尺寸
crop_size = 224# 创建CenterCrop变换对象
center_crop = transforms.CenterCrop(crop_size)# 对图像进行中心裁剪
cropped_image = center_crop(image)# 显示裁剪后的图像
cropped_image.show()
在上面的示例中,我们首先导入了transforms模块和Image类。然后,我们加载了一张图像,并定义了裁剪尺寸为224。接下来,我们创建了一个CenterCrop变换对象,并将裁剪尺寸作为参数传递给它。最后,我们使用center_crop对象对图像进行中心裁剪,并显示裁剪后的图像。

6. transforms.ColorJitter(brightness=0.2, contrast=0.1, saturation=0.1, hue=0.1)
transforms.ColorJitter是PyTorch中的一个图像变换类,它可以改变图像的亮度、对比度、饱和度和色调等属性。在你提供的例子中,brightness=0.2表示将图像的亮度随机变化为原图亮度的80%(1-0.2)到120%(1+0.2)之间。同样地,contrast=0.1、saturation=0.1和hue=0.1分别表示对比度、饱和度和色调的变化范围。
以下是一个示例代码,展示了如何使用transforms.ColorJitter来改变图像的亮度、对比度、饱和度和色调属性:
import torch
from torchvision import transforms# 创建一个ColorJitter对象,设置亮度、对比度、饱和度和色调的变化范围
jitter = transforms.ColorJitter(brightness=0.2, contrast=0.1, saturation=0.1, hue=0.1)# 加载图像
image = Image.open('image.jpg')# 对图像进行变换
transformed_image = jitter(image)# 显示变换后的图像
transformed_image.show()
这段代码会加载一张名为image.jpg的图像,并使用transforms.ColorJitter对图像进行亮度、对比度、饱和度和色调的变换。最后,显示变换后的图像。

可以明显看到这些人的脸更红了
7.transforms.RandomGrayscale
transforms.RandomGrayscale是一个用于随机将图像转换为灰度图像的操作。它可以在图像上随机选择一些像素,并将它们转换为灰度值,而其他像素保持不变。
下面是一个使用transforms.RandomGrayscale的示例代码:
import torchvision.transforms as transforms
from PIL import Image# 加载图像
image = Image.open("image.jpg")# 定义transforms
transform = transforms.Compose([transforms.RandomGrayscale(p=0.5),])# 对图像进行转换
transformed_image = transform(image)# 显示转换后的图像
transformed_image.show()
在上面的示例中,我们首先加载了一张图像,然后定义了一个transforms.Compose对象,其中包含了transforms.RandomGrayscale操作和transforms.ToTensor操作。然后,我们将图像应用于这个transforms对象,得到了转换后的图像。最后,我们使用show()方法显示了转换后的图像。

8.transforms.ToTensor()
transforms.ToTensor()是PyTorch中的一个图像转换函数,它将PIL图像或NumPy数组转换为张量(Tensor)。这个函数的作用是将图像数据从范围[0, 255]转换为范围[0.0, 1.0]的浮点数张量,并且将通道顺序从H×W×C转换为C×H×W。
下面是一个使用transforms.ToTensor()的示例:
import torch
from torchvision import transforms# 假设有一张PIL图像img
img = Image.open('image.jpg')# 创建一个transforms对象,将图像转换为张量
transform = transforms.ToTensor()# 使用transforms对象对图像进行转换
tensor_img = transform(img)print('tensor_img',tensor_img.shape)print(tensor_img)
输出结果将是一个形状为[C, H, W]的张量,其中C是通道数,H是图像的高度,W是图像的宽度。
tensor_img torch.Size([3, 375, 500])
tensor([[[1.0000, 1.0000, 1.0000, ..., 1.0000, 1.0000, 1.0000],[1.0000, 1.0000, 1.0000, ..., 1.0000, 1.0000, 1.0000],[1.0000, 1.0000, 1.0000, ..., 1.0000, 1.0000, 1.0000],...,[0.5333, 0.4431, 0.4667, ..., 0.4392, 0.4431, 0.4627],[0.4510, 0.6275, 0.4549, ..., 0.4510, 0.4196, 0.4235],[0.5804, 0.4196, 0.3961, ..., 0.4588, 0.4275, 0.4157]],[[1.0000, 1.0000, 1.0000, ..., 1.0000, 1.0000, 1.0000],[1.0000, 1.0000, 1.0000, ..., 1.0000, 1.0000, 1.0000],[1.0000, 1.0000, 1.0000, ..., 1.0000, 1.0000, 1.0000],...,[0.4941, 0.4078, 0.4392, ..., 0.4392, 0.4314, 0.4510],[0.4000, 0.5882, 0.4275, ..., 0.4392, 0.4039, 0.4078],[0.5176, 0.3804, 0.3843, ..., 0.4471, 0.4118, 0.3882]],[[1.0000, 1.0000, 1.0000, ..., 1.0000, 1.0000, 1.0000],[1.0000, 1.0000, 1.0000, ..., 1.0000, 1.0000, 1.0000],[1.0000, 1.0000, 1.0000, ..., 1.0000, 1.0000, 1.0000],...,[0.4471, 0.3725, 0.4078, ..., 0.4078, 0.3961, 0.4157],[0.3373, 0.5490, 0.3961, ..., 0.4039, 0.3686, 0.3725],[0.4549, 0.3412, 0.3569, ..., 0.4196, 0.3765, 0.3569]]])
9.transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])是PyTorch中的一个数据预处理操作,用于将图像数据进行归一化处理。具体来说,它将输入的图像数据减去均值[0.5, 0.5, 0.5],然后再除以标准差[0.5, 0.5, 0.5],从而使得处理后的图像数据的均值为0,标准差为1。
这个操作的目的是为了使得模型更容易收敛,因为经过归一化处理后的数据符合标准正态分布。在归一化之前,图像数据的像素值通常是在[0, 1]的范围内,归一化之后,像素值会变成在[-1, 1]的范围内。
需要注意的是,如果使用的是transforms.Normalize(channel_mean, channel_std),其中channel_mean和channel_std是根据数据计算得到的均值和标准差,那么归一化之后的数据的均值会变成0,标准差会变成1。
以下是一个示例代码,演示了如何使用transforms.Normalize进行图像数据的归一化处理:
import torch
import torchvision.transforms as transforms# 假设img是一个图像数据
img = ...# 定义归一化操作
normalize = transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])# 对图像数据进行归一化处理
normalized_img = normalize(img)# 打印归一化后的图像数据
print(normalized_img)
输出
normalized_img torch.Size([3, 375, 500])
tensor([[[ 1.0000, 1.0000, 1.0000, ..., 1.0000, 1.0000, 1.0000],[ 1.0000, 1.0000, 1.0000, ..., 1.0000, 1.0000, 1.0000],[ 1.0000, 1.0000, 1.0000, ..., 1.0000, 1.0000, 1.0000],...,[ 0.0667, -0.1137, -0.0667, ..., -0.1216, -0.1137, -0.0745],[-0.0980, 0.2549, -0.0902, ..., -0.0980, -0.1608, -0.1529],[ 0.1608, -0.1608, -0.2078, ..., -0.0824, -0.1451, -0.1686]],[[ 1.0000, 1.0000, 1.0000, ..., 1.0000, 1.0000, 1.0000],[ 1.0000, 1.0000, 1.0000, ..., 1.0000, 1.0000, 1.0000],[ 1.0000, 1.0000, 1.0000, ..., 1.0000, 1.0000, 1.0000],...,[-0.0118, -0.1843, -0.1216, ..., -0.1216, -0.1373, -0.0980],[-0.2000, 0.1765, -0.1451, ..., -0.1216, -0.1922, -0.1843],[ 0.0353, -0.2392, -0.2314, ..., -0.1059, -0.1765, -0.2235]],[[ 1.0000, 1.0000, 1.0000, ..., 1.0000, 1.0000, 1.0000],[ 1.0000, 1.0000, 1.0000, ..., 1.0000, 1.0000, 1.0000],[ 1.0000, 1.0000, 1.0000, ..., 1.0000, 1.0000, 1.0000],...,[-0.1059, -0.2549, -0.1843, ..., -0.1843, -0.2078, -0.1686],[-0.3255, 0.0980, -0.2078, ..., -0.1922, -0.2627, -0.2549],[-0.0902, -0.3176, -0.2863, ..., -0.1608, -0.2471, -0.2863]]])
相关文章:
深度学习中用来训练的train.py 探究学习2.0( 数据预处理)
数据预处理 下列代码为train.py中常见的一些数据处理方法 train_transform transforms.Compose([transforms.Resize((224, 224)),transforms.RandomVerticalFlip(),# 随机旋转,-45度到45度之间随机选transforms.RandomRotation(45),# 从中心开始裁剪transforms.C…...
vscode debug c++代码
需要提前写好CMakeLists.txt 在tasks.json中写好编译的步骤,即tasks,如cmake … 和make -j 在lauch.json中配置可执行文件的路径和需要执行tasks中的哪一个任务 具体步骤: 1.写好c代码和CMakeLists.txt 2.配置tasks.json 终端–>配置任务…...
HarmonyOS的功能及场景应用
一、基本介绍 鸿蒙HarmonyOS主要应用的设备包括智慧屏、平板、手表、智能音箱、IoT设备等。具体来说,鸿蒙系统是一款面向全场景(移动办公、运动健康、社交通信、媒体娱乐等)的分布式操作系统,能够支持手机、平板、智能穿戴、智慧屏、车机等多种终端设备…...
汽车级EEPROM 存储器 M24C64-DRMN3TP/K是电可擦除可编程只读存储器?它的功能特性有哪些?
M24C64-DRMN3TP/K是一款64 Kbit串行EEPROM汽车级设备,工作温度高达125C。符合汽车标准AEC-Q100 1级规定的极高可靠性。 该设备可通过一个高达1MHz的简单串行I2C兼容接口访问。 存储器阵列基于先进的真EEPROM技术(电可擦除可编程存储器)。M2…...
VS Code无法远程ubuntu
①windows下cmd中执行命令: ssh-keygen -t rsa -C "xxxxxx.com" ②ubuntu 下bash 命令 ssh-keygen -t rsa -C "xxxxxx.com" ③cat id_rsa.pub >> ~/.ssh/authorized_keys ④ C:\Users\Administrator\AppData\Roaming\Code\User\set…...
大数据开发职业规划
大数据开发职业规划 我的学历是双非本,在学校学习的是大数据专业,目前是在企业做大数据全栈的工作,爬虫,数仓,风控项目,etl开发都做 .................................................................…...
XxIJob入门-示例
一、部署 xxlJob (一) 下载地址, git clone 到本地。 http://gitee.com/xuxueli0323/xxl-job https://github.com/xuxueli/xxl-job (二) 插入 xxl_job 的sql脚本: 在项目的 /xxl-job/doc/db/tables_xxl_job.sql ,找到sql脚本,…...
单挑力扣(LeetCode)SQL题:1549. 每件商品的最新订单(难度:中等)
相信很多学习SQL的小伙伴都面临这样的困境,学习完书本上的SQL基础知识后,一方面想测试下自己的水平;另一方面想进一步提升,却不知道方法。 其实,对于技能型知识,我的观点一贯都是:多练习、多实…...
Javacv-利用Netty实现推流直播复用(flv)
前言 上一篇文章《JavaCV之rtmp推流(FLV和M3U8)》介绍了javacv的基本使用,今天来讲讲如何实现推流复用。 以监控摄像头的直播为例,通常分为三步: 从设备获取音视频流利用javacv进行解码(例如flv或m3u8&am…...
cfa一级考生复习经验分享系列(十一)
理工科已经毕业,正在工作,毫无金融背景。一共准备了四个月,每天下班和周末抽时间看看。前三个月节奏比较松散,毕竟时不时有人叫我出去high,最后一个月认真看了看。 用到的资料 JC网课,官方Mock,…...
Nginx基本配置内容
http 模块适用于处理 Web 请求,而 stream 模块适用于处理非 HTTP 流量,如数据库连接、邮件传输等。 在 stream 模块中,你可以配置一些 TCP 或 UDP 的代理服务,以便 Nginx 能够转发这些流量。 与网站相关的 关于网站相关的要写在ht…...
Jenkins安装与设置(插件安装失败,版本问题解决)
早期的使用docker安装jenkins的方法会出现插件无法安装的问题,是由于docker拉取的jenkins版本太低了 jdk安装 Linux系统安装JDK1.8 详细流程 maven安装: centos7下安装Maven 使用docker进行安装jenkins: 先把镜像和容器卸干净 docker ps -a…...
精度提升10个点!HD-Painter:无需训练的文本引导高分辨率图像修复方案!
基于文本到图像扩散模型的空前成功,在文本引导的图像修复方面取得了最新进展,取得了异常逼真和视觉上可靠的结果。然而,目前的文本到图像修复模型仍然存在显著的改进潜力,特别是在更好地与用户提示对齐和执行高分辨率修复方面。因…...
javaweb初体验
javaweb初体验 文章目录 javaweb初体验前言一、流程:1.创建Maven的父工程2.创建Maven,Webapp的子工程3.在pom.xml文件中添加依赖(父工程与子工程共用)4.写一个helloservlet类实现httpservlet接口,重写doget,…...
手写爬虫框架
前言 参照了Scrapy、Feapder的设计模式,实现的一个轻量级爬虫框架(目前约200行代码) 源码地址 https://gitee.com/markadc/pader 项目持续更新中…...
基于Kettle和帆软Finereport的血缘解析
一、背景: 用户经常会针对数据存在质量的存疑,反馈数据不准。开发人员排查数据质量问题步骤:首先和业务人员对接了解是哪里数据不准确,要定位是哪张报表,然后查看报表后面数据来源,然后一路排查数仓。往往定…...
给qemu虚机更换(Windows PE)光盘
1. 背景 qemu虚机里运行windows。如果遇到虚机windows启动故障,甚至连安全模式也故障时,可以尝试更换另一个光驱里的光盘为pe光盘。 2. 步骤 2.1. 找出VDI虚机所在的计算节点 ssh登录之,virsh list获得虚机id,例如 391 1255…...
python 神经网络归纳
CNN卷积神经网络 一个卷积神经网络主要由以下5层组成: 数据输入层/ Input layer卷积计算层/ CONV layerReLU激励层 / ReLU layer池化层 / Pooling layer全连接层 / FC layer 1. 数据输入层 该层要做的处理主要是对原始图像数据进行预处理,其中包括&…...
Python高级语法与正则表达式
Python提供了 with 语句的写法,既简单又安全。 文件操作的时候使用with语句可以自动调用关闭文件操作,即使出现异常也会自动关闭文件操作。 # 1、以写的方式打开文件 with open(1.txt, w) as f:# 2、读取文件内容f.write(hello world) 生成器的创建方…...
【洛谷算法题】P4414-[COCI2006-2007#2] ABC【入门2分支结构】Java题解
👨💻博客主页:花无缺 欢迎 点赞👍 收藏⭐ 留言📝 加关注✅! 本文由 花无缺 原创 收录于专栏 【洛谷算法题】 文章目录 【洛谷算法题】P4414-[COCI2006-2007#2] ABC【入门2分支结构】Java题解🌏题目描述&a…...
conda相比python好处
Conda 作为 Python 的环境和包管理工具,相比原生 Python 生态(如 pip 虚拟环境)有许多独特优势,尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处: 一、一站式环境管理:…...
如何在看板中体现优先级变化
在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...
Frozen-Flask :将 Flask 应用“冻结”为静态文件
Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是:将一个 Flask Web 应用生成成纯静态 HTML 文件,从而可以部署到静态网站托管服务上,如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...
WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)
一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解,适合用作学习或写简历项目背景说明。 🧠 一、概念简介:Solidity 合约开发 Solidity 是一种专门为 以太坊(Ethereum)平台编写智能合约的高级编…...
Web 架构之 CDN 加速原理与落地实践
文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 …...
ABAP设计模式之---“简单设计原则(Simple Design)”
“Simple Design”(简单设计)是软件开发中的一个重要理念,倡导以最简单的方式实现软件功能,以确保代码清晰易懂、易维护,并在项目需求变化时能够快速适应。 其核心目标是避免复杂和过度设计,遵循“让事情保…...
人机融合智能 | “人智交互”跨学科新领域
本文系统地提出基于“以人为中心AI(HCAI)”理念的人-人工智能交互(人智交互)这一跨学科新领域及框架,定义人智交互领域的理念、基本理论和关键问题、方法、开发流程和参与团队等,阐述提出人智交互新领域的意义。然后,提出人智交互研究的三种新范式取向以及它们的意义。最后,总结…...
安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲
文章目录 前言第一部分:体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分:体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...
(一)单例模式
一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...
Vue3 PC端 UI组件库我更推荐Naive UI
一、Vue3生态现状与UI库选择的重要性 随着Vue3的稳定发布和Composition API的广泛采用,前端开发者面临着UI组件库的重新选择。一个好的UI库不仅能提升开发效率,还能确保项目的长期可维护性。本文将对比三大主流Vue3 UI库(Naive UI、Element …...
