机器学习之实验过程01
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
data_path = '/home/py/Work/labs/data/SD.csv' # 请确保您的数据文件路径是正确的
df = pd.read_csv(data_path)
df.head()
# 创建散点图
# 创建散点图
plt.figure(figsize=(10, 6))
plt.scatter(df['成本'], df['价格'], color='blue', label='Data Spot')
plt.title('Cost vs Price')
plt.xlabel('Cost')
plt.ylabel('Price')
plt.legend()
plt.grid(True)
plt.show()
plt.savefig('test.jpg')
实现梯度下降算法来优化线性回归模型的参数
def gradient_descent(X, y, learning_rate=0.01, iterations=100):"""实现梯度下降算法来优化线性回归模型的参数。"""m = len(y)X = np.hstack((np.ones((m, 1)), X)) # 添加一列 1 作为偏置项theta = np.zeros(X.shape[1])loss_history = []for _ in range(iterations):predictions = X.dot(theta)errors = predictions - ygradient = X.T.dot(errors) / mtheta -= learning_rate * gradientloss = np.mean(errors ** 2) / 2loss_history.append(loss)return theta, loss_history
# 准备数据
X = df[['成本']]
y = df['价格']
# 使用梯度下降优化参数
theta, _ = gradient_descent(X, y, iterations=1000)
# 绘制回归拟合图
plt.figure(figsize=(10, 6))
plt.scatter(X, y, color='blue', label='Data Spot')
plt.plot(X, theta[0] + theta[1] * X, color='red', label='Fitting line')
plt.title('Cost vs Price')
plt.xlabel('Cost')
plt.ylabel('Price')
plt.legend()
plt.grid(True)
plt.show()
# 显示回归方程
print(f"The regression equation is: Price = {theta[0]:.2f} + {theta[1]:.2f} * Cost")

# 分析迭代次数对性能的影响
# 分析迭代次数对性能的影响
iteration_counts = [50, 100, 200, 500, 1000,2000]
losses = []for iterations in iteration_counts:_, loss_history = gradient_descent(X, y, iterations=iterations)losses.append(loss_history[-1])
# 绘制结果
plt.figure(figsize=(10, 6))
plt.plot(iteration_counts, losses, marker='o')
plt.title('Loss vs. Iteration')
plt.xlabel('Iterations')
plt.ylabel('Loss Value')
plt.grid(True)
plt.show()

相关文章:
机器学习之实验过程01
import pandas as pd import numpy as np import matplotlib.pyplot as plt data_path /home/py/Work/labs/data/SD.csv # 请确保您的数据文件路径是正确的 df pd.read_csv(data_path) df.head() # 创建散点图 # 创建散点图 plt.figure(figsize(10, 6)) plt.scatter…...
【【迭代16次的CORDIC算法-verilog实现】】
迭代16次的CORDIC算法-verilog实现 -32位迭代16次verilog代码实现 CORDIC.v module cordic32#(parameter DATA_WIDTH 8d32 , // we set data widthparameter PIPELINE 5d16 // Optimize waveform)(input …...
IntelliJ IDEA 2023.3 安装教程
引言 IntelliJ IDEA,通常简称为 IDEA,是由 JetBrains 开发的一款强大的集成开发环境,专为提升开发者的生产力而设计。它支持多种编程语言,包括 Java、Kotlin、Scala 和其他 JVM 语言,同时也为前端开发和移动应用开发提…...
Go 错误处理
Go 错误处理 Go 语言通过内置的错误接口提供了非常简单的错误处理机制。 error类型是一个接口类型,这是它的定义: type error interface {Error() string }我们可以在编码中通过实现 error 接口类型来生成错误信息。 函数通常在最后的返回值中返回错误…...
HarmonyOS构建第一个ArkTS应用(Stage模型)
构建第一个ArkTS应用(Stage模型) 创建ArkTS工程 若首次打开DevEco Studio,请点击Create Project创建工程。如果已经打开了一个工程,请在菜单栏选择File > New > Create Project来创建一个新工程。 选择Application应用开发…...
故障排查利器-错误日志详解
目录 什么是错误日志 错误日志的作用 错误日志的内容 错误日志的格式 错误日志的生成方式 错误日志的解析和处理 错误日志的最佳实践 小结 错误日志是软件开发和运维中非常重要的一部分,记录了应用程序运行过程中发生的错误和异常信息,如错误类型…...
微信小程序(uniapp)api讲解
Uniapp是一个基于Vue.js的跨平台开发框架,可以同时开发微信小程序、H5、App等多个平台的应用。下面是Uniapp常用的API讲解: Vue.js的API Uniapp采用了Vue.js框架,因此可以直接使用Vue.js的API。例如:v-show、v-if、v-for、comput…...
overtureDNS使用介绍
Overture是一个定制的DNS中继服务器。 在此下在二进制版本 https://github.com/shawn1m/overture/releases默认配置文件./config.yml bindAddress: :53 debugHTTPAddress: 127.0.0.1:5555 dohEnabled: false primaryDNS:- name: DNSPodaddress: 119.29.29.29:53protocol: udp…...
平衡二叉树的构建(递归
目录 1.概念:2.特点:3.构建方法:4.代码:小结: 1.概念: 平衡二叉树(Balanced Binary Tree),也称为AVL树,是一种二叉树,它满足每个节点的左子树和右…...
flutter开发实战-设置bottomNavigationBar中间按钮悬浮效果
flutter开发实战-设置bottomNavigationBar中间按钮悬浮的效果 在使用tabbar时候,可以使用bottomNavigationBar来设置中间凸起的按钮,如下 一、效果图 中间按钮凸起的效果图如下 二、实现代码 我们使用BottomAppBar 一个容器,通常与[Sscaf…...
不同参数规模大语言模型在不同微调方法下所需要的显存总结
原文来自DataLearnerAI官方网站: 不同参数规模大语言模型在不同微调方法下所需要的显存总结 | 数据学习者官方网站(Datalearner)https://www.datalearner.com/blog/1051703254378255 大模型的微调是当前很多人都在做的事情。微调可以让大语言模型适应特定领域的任…...
Crow:Middlewares 庖丁解牛6 middleware_call_helper
Crow:http请求到Rule绑定的handler_的调用链-CSDN博客 介绍了handler_的调用顺序,其中的一个调用过程是Connection::->handle void handle() {...ctx_ = detail::context<Middlewares...>();req_.middleware_context = static_cast<void*>(&ctx_);req_.m…...
MyBatis:Generator
MyBatis Generator附批量操作分页查询存储过程 Generator 介绍网址:Introduction to MyBatis Generator Generator ,一个用于 MyBatis 的代码生成工具,可以根据数据库表结构自动生成对应的实体类、DAO 接口和 SQL 映射文件,提高…...
rabbitmq的事务实现、消费者的事务实现
RabbitMQ提供了事务机制,可以确保消息在发送和确认过程中的一致性。使用事务机制可以将一系列的消息操作(发送、确认、回滚)作为一个原子操作,要么全部执行成功,要么全部回滚。 下面是使用RabbitMQ事务的一般步骤&…...
龙芯杯个人赛串口——做一个 UART串口——RS-232
文章目录 Async transmitterAsync receiver1. RS-232 串行接口的工作原理DB-9 connectorAsynchronous communicationHow fast can we send data? 2.波特率时钟生成器Parameterized FPGA baud generator 3.RS-232 transmitter数据序列化完整代码: 4.RS-232 receiver…...
验证码服务使用指南
验证码服务使用指南 1 部署验证码服务 1.1 基础环境 Java 1.8 Maven3.3.9 1.2 安装Redis 参考“Redis安装指南” 1.3 部署验证码服务 1.3.1 下载源码 使用git从远程下载验证码服务代码(开源)。 1.3.2 使用idea打开项目 使用idea打开上一步下载的sailing目录…...
js中Math.min(...arr)和Math.max(...arr)的注意点
当arr变量为空数组时,这两个函数和不传参数时的结果是一样的 Math.max() // -Infinity Math.max(...[]) // -InfinityMath.min() // Infinity Math.min(...[]) // Infinity...
【zookeeper特点和集群架构】
文章目录 1. Zookeeper介绍2、ZooKeeper数据结构3、Zookeeper集群架构 1. Zookeeper介绍 ZooKeeper 是一个开源的分布式协调框架,是Apache Hadoop 的一个子项目,主要用来解决分 布式集群中应用系统的一致性问题。Zookeeper 的设计目标是将那些复杂且容易…...
MySQL集群架构搭建以及多数据源管理实战
MySQL集群架构搭建以及多数据源管理实战 数据库的分库分表操作,是互联网大型应用所需要面对的最核心的问题。因为数据往往是一个应用最核心的价值所在。但是,在最开始的时候,需要强调下,在实际应用中,对于数据库&a…...
C# WPF上位机开发(从demo编写到项目开发)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing 163.com】 C# WPF编程,特别是控件部分,其实学起来特别快。只是后面多了多线程、锁、数据库、网络这部分稍微复杂一点,不过…...
利用最小二乘法找圆心和半径
#include <iostream> #include <vector> #include <cmath> #include <Eigen/Dense> // 需安装Eigen库用于矩阵运算 // 定义点结构 struct Point { double x, y; Point(double x_, double y_) : x(x_), y(y_) {} }; // 最小二乘法求圆心和半径 …...
uniapp 对接腾讯云IM群组成员管理(增删改查)
UniApp 实战:腾讯云IM群组成员管理(增删改查) 一、前言 在社交类App开发中,群组成员管理是核心功能之一。本文将基于UniApp框架,结合腾讯云IM SDK,详细讲解如何实现群组成员的增删改查全流程。 权限校验…...
HTML 语义化
目录 HTML 语义化HTML5 新特性HTML 语义化的好处语义化标签的使用场景最佳实践 HTML 语义化 HTML5 新特性 标准答案: 语义化标签: <header>:页头<nav>:导航<main>:主要内容<article>&#x…...
(二)TensorRT-LLM | 模型导出(v0.20.0rc3)
0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...
oracle与MySQL数据库之间数据同步的技术要点
Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异,它们的数据同步要求既要保持数据的准确性和一致性,又要处理好性能问题。以下是一些主要的技术要点: 数据结构差异 数据类型差异ÿ…...
uniapp中使用aixos 报错
问题: 在uniapp中使用aixos,运行后报如下错误: AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...
C# 求圆面积的程序(Program to find area of a circle)
给定半径r,求圆的面积。圆的面积应精确到小数点后5位。 例子: 输入:r 5 输出:78.53982 解释:由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982,因为我们只保留小数点后 5 位数字。 输…...
深度学习水论文:mamba+图像增强
🧀当前视觉领域对高效长序列建模需求激增,对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。 🧀因此短时间内,就有不…...
腾讯云V3签名
想要接入腾讯云的Api,必然先按其文档计算出所要求的签名。 之前也调用过腾讯云的接口,但总是卡在签名这一步,最后放弃选择SDK,这次终于自己代码实现。 可能腾讯云翻新了接口文档,现在阅读起来,清晰了很多&…...
MySQL的pymysql操作
本章是MySQL的最后一章,MySQL到此完结,下一站Hadoop!!! 这章很简单,完整代码在最后,详细讲解之前python课程里面也有,感兴趣的可以往前找一下 一、查询操作 我们需要打开pycharm …...
