机器学习之实验过程01
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
data_path = '/home/py/Work/labs/data/SD.csv' # 请确保您的数据文件路径是正确的
df = pd.read_csv(data_path)
df.head()
# 创建散点图
# 创建散点图
plt.figure(figsize=(10, 6))
plt.scatter(df['成本'], df['价格'], color='blue', label='Data Spot')
plt.title('Cost vs Price')
plt.xlabel('Cost')
plt.ylabel('Price')
plt.legend()
plt.grid(True)
plt.show()
plt.savefig('test.jpg')
实现梯度下降算法来优化线性回归模型的参数
def gradient_descent(X, y, learning_rate=0.01, iterations=100):"""实现梯度下降算法来优化线性回归模型的参数。"""m = len(y)X = np.hstack((np.ones((m, 1)), X)) # 添加一列 1 作为偏置项theta = np.zeros(X.shape[1])loss_history = []for _ in range(iterations):predictions = X.dot(theta)errors = predictions - ygradient = X.T.dot(errors) / mtheta -= learning_rate * gradientloss = np.mean(errors ** 2) / 2loss_history.append(loss)return theta, loss_history
# 准备数据
X = df[['成本']]
y = df['价格']
# 使用梯度下降优化参数
theta, _ = gradient_descent(X, y, iterations=1000)
# 绘制回归拟合图
plt.figure(figsize=(10, 6))
plt.scatter(X, y, color='blue', label='Data Spot')
plt.plot(X, theta[0] + theta[1] * X, color='red', label='Fitting line')
plt.title('Cost vs Price')
plt.xlabel('Cost')
plt.ylabel('Price')
plt.legend()
plt.grid(True)
plt.show()
# 显示回归方程
print(f"The regression equation is: Price = {theta[0]:.2f} + {theta[1]:.2f} * Cost")

# 分析迭代次数对性能的影响
# 分析迭代次数对性能的影响
iteration_counts = [50, 100, 200, 500, 1000,2000]
losses = []for iterations in iteration_counts:_, loss_history = gradient_descent(X, y, iterations=iterations)losses.append(loss_history[-1])
# 绘制结果
plt.figure(figsize=(10, 6))
plt.plot(iteration_counts, losses, marker='o')
plt.title('Loss vs. Iteration')
plt.xlabel('Iterations')
plt.ylabel('Loss Value')
plt.grid(True)
plt.show()

相关文章:
机器学习之实验过程01
import pandas as pd import numpy as np import matplotlib.pyplot as plt data_path /home/py/Work/labs/data/SD.csv # 请确保您的数据文件路径是正确的 df pd.read_csv(data_path) df.head() # 创建散点图 # 创建散点图 plt.figure(figsize(10, 6)) plt.scatter…...
【【迭代16次的CORDIC算法-verilog实现】】
迭代16次的CORDIC算法-verilog实现 -32位迭代16次verilog代码实现 CORDIC.v module cordic32#(parameter DATA_WIDTH 8d32 , // we set data widthparameter PIPELINE 5d16 // Optimize waveform)(input …...
IntelliJ IDEA 2023.3 安装教程
引言 IntelliJ IDEA,通常简称为 IDEA,是由 JetBrains 开发的一款强大的集成开发环境,专为提升开发者的生产力而设计。它支持多种编程语言,包括 Java、Kotlin、Scala 和其他 JVM 语言,同时也为前端开发和移动应用开发提…...
Go 错误处理
Go 错误处理 Go 语言通过内置的错误接口提供了非常简单的错误处理机制。 error类型是一个接口类型,这是它的定义: type error interface {Error() string }我们可以在编码中通过实现 error 接口类型来生成错误信息。 函数通常在最后的返回值中返回错误…...
HarmonyOS构建第一个ArkTS应用(Stage模型)
构建第一个ArkTS应用(Stage模型) 创建ArkTS工程 若首次打开DevEco Studio,请点击Create Project创建工程。如果已经打开了一个工程,请在菜单栏选择File > New > Create Project来创建一个新工程。 选择Application应用开发…...
故障排查利器-错误日志详解
目录 什么是错误日志 错误日志的作用 错误日志的内容 错误日志的格式 错误日志的生成方式 错误日志的解析和处理 错误日志的最佳实践 小结 错误日志是软件开发和运维中非常重要的一部分,记录了应用程序运行过程中发生的错误和异常信息,如错误类型…...
微信小程序(uniapp)api讲解
Uniapp是一个基于Vue.js的跨平台开发框架,可以同时开发微信小程序、H5、App等多个平台的应用。下面是Uniapp常用的API讲解: Vue.js的API Uniapp采用了Vue.js框架,因此可以直接使用Vue.js的API。例如:v-show、v-if、v-for、comput…...
overtureDNS使用介绍
Overture是一个定制的DNS中继服务器。 在此下在二进制版本 https://github.com/shawn1m/overture/releases默认配置文件./config.yml bindAddress: :53 debugHTTPAddress: 127.0.0.1:5555 dohEnabled: false primaryDNS:- name: DNSPodaddress: 119.29.29.29:53protocol: udp…...
平衡二叉树的构建(递归
目录 1.概念:2.特点:3.构建方法:4.代码:小结: 1.概念: 平衡二叉树(Balanced Binary Tree),也称为AVL树,是一种二叉树,它满足每个节点的左子树和右…...
flutter开发实战-设置bottomNavigationBar中间按钮悬浮效果
flutter开发实战-设置bottomNavigationBar中间按钮悬浮的效果 在使用tabbar时候,可以使用bottomNavigationBar来设置中间凸起的按钮,如下 一、效果图 中间按钮凸起的效果图如下 二、实现代码 我们使用BottomAppBar 一个容器,通常与[Sscaf…...
不同参数规模大语言模型在不同微调方法下所需要的显存总结
原文来自DataLearnerAI官方网站: 不同参数规模大语言模型在不同微调方法下所需要的显存总结 | 数据学习者官方网站(Datalearner)https://www.datalearner.com/blog/1051703254378255 大模型的微调是当前很多人都在做的事情。微调可以让大语言模型适应特定领域的任…...
Crow:Middlewares 庖丁解牛6 middleware_call_helper
Crow:http请求到Rule绑定的handler_的调用链-CSDN博客 介绍了handler_的调用顺序,其中的一个调用过程是Connection::->handle void handle() {...ctx_ = detail::context<Middlewares...>();req_.middleware_context = static_cast<void*>(&ctx_);req_.m…...
MyBatis:Generator
MyBatis Generator附批量操作分页查询存储过程 Generator 介绍网址:Introduction to MyBatis Generator Generator ,一个用于 MyBatis 的代码生成工具,可以根据数据库表结构自动生成对应的实体类、DAO 接口和 SQL 映射文件,提高…...
rabbitmq的事务实现、消费者的事务实现
RabbitMQ提供了事务机制,可以确保消息在发送和确认过程中的一致性。使用事务机制可以将一系列的消息操作(发送、确认、回滚)作为一个原子操作,要么全部执行成功,要么全部回滚。 下面是使用RabbitMQ事务的一般步骤&…...
龙芯杯个人赛串口——做一个 UART串口——RS-232
文章目录 Async transmitterAsync receiver1. RS-232 串行接口的工作原理DB-9 connectorAsynchronous communicationHow fast can we send data? 2.波特率时钟生成器Parameterized FPGA baud generator 3.RS-232 transmitter数据序列化完整代码: 4.RS-232 receiver…...
验证码服务使用指南
验证码服务使用指南 1 部署验证码服务 1.1 基础环境 Java 1.8 Maven3.3.9 1.2 安装Redis 参考“Redis安装指南” 1.3 部署验证码服务 1.3.1 下载源码 使用git从远程下载验证码服务代码(开源)。 1.3.2 使用idea打开项目 使用idea打开上一步下载的sailing目录…...
js中Math.min(...arr)和Math.max(...arr)的注意点
当arr变量为空数组时,这两个函数和不传参数时的结果是一样的 Math.max() // -Infinity Math.max(...[]) // -InfinityMath.min() // Infinity Math.min(...[]) // Infinity...
【zookeeper特点和集群架构】
文章目录 1. Zookeeper介绍2、ZooKeeper数据结构3、Zookeeper集群架构 1. Zookeeper介绍 ZooKeeper 是一个开源的分布式协调框架,是Apache Hadoop 的一个子项目,主要用来解决分 布式集群中应用系统的一致性问题。Zookeeper 的设计目标是将那些复杂且容易…...
MySQL集群架构搭建以及多数据源管理实战
MySQL集群架构搭建以及多数据源管理实战 数据库的分库分表操作,是互联网大型应用所需要面对的最核心的问题。因为数据往往是一个应用最核心的价值所在。但是,在最开始的时候,需要强调下,在实际应用中,对于数据库&a…...
C# WPF上位机开发(从demo编写到项目开发)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing 163.com】 C# WPF编程,特别是控件部分,其实学起来特别快。只是后面多了多线程、锁、数据库、网络这部分稍微复杂一点,不过…...
css实现圆环展示百分比,根据值动态展示所占比例
代码如下 <view class""><view class"circle-chart"><view v-if"!!num" class"pie-item" :style"{background: conic-gradient(var(--one-color) 0%,#E9E6F1 ${num}%),}"></view><view v-else …...
Golang dig框架与GraphQL的完美结合
将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用,可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器,能够帮助开发者更好地管理复杂的依赖关系,而 GraphQL 则是一种用于 API 的查询语言,能够提…...
在 Nginx Stream 层“改写”MQTT ngx_stream_mqtt_filter_module
1、为什么要修改 CONNECT 报文? 多租户隔离:自动为接入设备追加租户前缀,后端按 ClientID 拆分队列。零代码鉴权:将入站用户名替换为 OAuth Access-Token,后端 Broker 统一校验。灰度发布:根据 IP/地理位写…...
页面渲染流程与性能优化
页面渲染流程与性能优化详解(完整版) 一、现代浏览器渲染流程(详细说明) 1. 构建DOM树 浏览器接收到HTML文档后,会逐步解析并构建DOM(Document Object Model)树。具体过程如下: (…...
Nuxt.js 中的路由配置详解
Nuxt.js 通过其内置的路由系统简化了应用的路由配置,使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...
12.找到字符串中所有字母异位词
🧠 题目解析 题目描述: 给定两个字符串 s 和 p,找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义: 若两个字符串包含的字符种类和出现次数完全相同,顺序无所谓,则互为…...
C# SqlSugar:依赖注入与仓储模式实践
C# SqlSugar:依赖注入与仓储模式实践 在 C# 的应用开发中,数据库操作是必不可少的环节。为了让数据访问层更加简洁、高效且易于维护,许多开发者会选择成熟的 ORM(对象关系映射)框架,SqlSugar 就是其中备受…...
【JavaSE】绘图与事件入门学习笔记
-Java绘图坐标体系 坐标体系-介绍 坐标原点位于左上角,以像素为单位。 在Java坐标系中,第一个是x坐标,表示当前位置为水平方向,距离坐标原点x个像素;第二个是y坐标,表示当前位置为垂直方向,距离坐标原点y个像素。 坐标体系-像素 …...
Pinocchio 库详解及其在足式机器人上的应用
Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库,专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性,并提供了一个通用的框架&…...
HDFS分布式存储 zookeeper
hadoop介绍 狭义上hadoop是指apache的一款开源软件 用java语言实现开源框架,允许使用简单的变成模型跨计算机对大型集群进行分布式处理(1.海量的数据存储 2.海量数据的计算)Hadoop核心组件 hdfs(分布式文件存储系统)&a…...
