做为骨干网络的分类模型的预训代码安装配置简单记录
一、安装配置环境
1、准备工作
代码地址
GitHub - bubbliiiing/classification-pytorch: 这是各个主干网络分类模型的源码,可以用于训练自己的分类模型。
# 创建环境
conda create -n ptorch1_2_0 python=3.6
# 然后启动
conda install pytorch==1.2.0 torchvision==0.4.0 cudatoolkit=10.0 -c pytorch
pip install scipy==1.2.1 numpy==1.17.0 matplotlib==3.1.2 opencv_python==4.1.2.30 tqdm==4.60.0 Pillow==8.2.0 h5py==2.10.0
下载好后 他的那个数据集 按他那个配置,然后在项目根目录下运行
python txt_annotation.py
生成对应的 txt 文件
2、遇到的问题
1、
ImportError: TensorBoard logging requires TensorBoard with Python summary writer installed. This should be available in 1.14 or above.
解决
pip install tensorboard
2、
ModuleNotFoundError: No module named 'past'
解决办法
pip install future
3、
ImportError: libSM.so.6: cannot open shared object file: No such file or directory
# 和
ImportError: libXrender.so.1: cannot open shared object file: No such file or directory
解决
apt-get install libsm6
apt-get install libxrender1
二、debug 记录
1、train_lines

val_lines

2、 show_config
----------------------------------------------------------------------
| keys | values|
----------------------------------------------------------------------
| num_classes | 2|
| backbone | mobilenetv2|
| model_path | |
| input_shape | [224, 224]|
| Init_Epoch | 0|
| Freeze_Epoch | 50|
| UnFreeze_Epoch | 200|
| Freeze_batch_size | 32|
| Unfreeze_batch_size | 32|
| Freeze_Train | True|
| Init_lr | 0.01|
| Min_lr | 0.0001|
| optimizer_type | sgd|
| momentum | 0.9|
| lr_decay_type | cos|
| save_period | 10|
| save_dir | logs|
| num_workers | 4|
| num_train | 20000|
| num_val | 5000|
----------------------------------------------------------------------
3、 optimizer

4、打印日志
Start Train
Epoch 1/200: 0%| | 0/625 [00:00<?, ?it/s<class 'dict'>]
utils_fit.py --- 19
if local_rank == 0:print('Start Train')pbar = tqdm(total=epoch_step,desc=f'Epoch {epoch + 1}/{Epoch}',postfix=dict,mininterval=0.3)
5、
gen

batch

三、其它
1、打印模型 model, 这个应该是 backbone
MobileNetV2((features): Sequential((0): ConvBNReLU((0): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=32, bias=False)(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): Conv2d(32, 16, kernel_size=(1, 1), stride=(1, 1), bias=False)(2): BatchNorm2d(16, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(2): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(16, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(96, 96, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=96, bias=False)(1): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(96, 24, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(3): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(24, 144, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(144, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(144, 144, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=144, bias=False)(1): BatchNorm2d(144, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(144, 24, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(4): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(24, 144, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(144, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(144, 144, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=144, bias=False)(1): BatchNorm2d(144, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(144, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(5): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(32, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=192, bias=False)(1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(192, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(6): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(32, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=192, bias=False)(1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(192, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(7): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(32, 192, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(192, 192, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=192, bias=False)(1): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(192, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(8): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(64, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(384, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(9): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(64, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(384, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(10): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(64, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(384, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(11): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(64, 384, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=384, bias=False)(1): BatchNorm2d(384, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(384, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(12): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(96, 576, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(576, 576, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=576, bias=False)(1): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(576, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(13): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(96, 576, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(576, 576, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=576, bias=False)(1): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(576, 96, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(14): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(96, 576, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(576, 576, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), groups=576, bias=False)(1): BatchNorm2d(576, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(576, 160, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(15): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(160, 960, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(960, 960, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=960, bias=False)(1): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(960, 160, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(16): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(160, 960, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(960, 960, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=960, bias=False)(1): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(960, 160, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(160, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(17): InvertedResidual((conv): Sequential((0): ConvBNReLU((0): Conv2d(160, 960, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(1): ConvBNReLU((0): Conv2d(960, 960, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), groups=960, bias=False)(1): BatchNorm2d(960, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True))(2): Conv2d(960, 320, kernel_size=(1, 1), stride=(1, 1), bias=False)(3): BatchNorm2d(320, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(18): ConvBNReLU((0): Conv2d(320, 1280, kernel_size=(1, 1), stride=(1, 1), bias=False)(1): BatchNorm2d(1280, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(2): ReLU6(inplace=True)))(classifier): Sequential((0): Dropout(p=0.2, inplace=False)(1): Linear(in_features=1280, out_features=2, bias=True))
)
2、数据集导入与建立
train.py --- 384 397
train_dataset = DataGenerator(train_lines, input_shape, True)
val_dataset = DataGenerator(val_lines, input_shape, False)gen = DataLoader(train_dataset, shuffle=shuffle, batch_size=batch_size, num_workers=num_workers, pin_memory=True, drop_last=True, collate_fn=detection_collate, sampler=train_sampler)
gen_val = DataLoader(val_dataset, shuffle=shuffle, batch_size=batch_size, num_workers=num_workers, pin_memory=True,drop_last=True, collate_fn=detection_collate, sampler=val_sampler)
3、 开始训练模型
train.py --- 404
for epoch in range(Init_Epoch, UnFreeze_Epoch):
训练过程在 train.py --- 452
fit_one_epoch(model_train, model, loss_history, optimizer, epoch, epoch_step, epoch_step_val, gen, gen_val, UnFreeze_Epoch, Cuda, fp16, scaler, save_period, save_dir, local_rank)
4、调整学习率
train.py --- 450
set_optimizer_lr(optimizer, lr_scheduler_func, epoch)
5、前向传播的入口
utils_fit.py --- 40
outputs = model_train(images)
相关文章:
做为骨干网络的分类模型的预训代码安装配置简单记录
一、安装配置环境 1、准备工作 代码地址 GitHub - bubbliiiing/classification-pytorch: 这是各个主干网络分类模型的源码,可以用于训练自己的分类模型。 # 创建环境 conda create -n ptorch1_2_0 python3.6 # 然后启动 conda install pytorch1.2.0 torchvision…...
网络协议(九):应用层(域名、DNS、DHCP)
网络协议系列文章 网络协议(一):基本概念、计算机之间的连接方式 网络协议(二):MAC地址、IP地址、子网掩码、子网和超网 网络协议(三):路由器原理及数据包传输过程 网络协议(四):网络分类、ISP、上网方式、公网私网、NAT 网络…...
有趣的小知识(三)提升网站速度的秘诀:掌握缓存基础,让你的网站秒开
像MySql等传统的关系型数据库已经不能适用于所有的业务场景,比如电商系统的秒杀场景,APP首页的访问流量高峰场景,很容易造成关系型数据库的瘫痪,随着缓存技术的出现很好的解决了这个问题。 一、缓存的概念(什么是缓存…...
SpringCloud之服务拆分和实现远程调用案例
服务拆分对单体架构项目来说:简单方便,高度耦合,扩展性差,适合小型项目。而对于分布式架构来说:低耦合,扩展性好,但架构复杂,难度大。微服务就是一种良好的分布式架构方案࿱…...
mybatis: Invalid bound statement (not found): com.atguigu.dao.UserDao.save
问题描述: 1 问题实质: dao层(又叫mapper接口)跟mapper.xml文件没有映射 2 问题原因: 出现这种映射问题的原因分为低级原因和更低级原因两种 更低级原因: (1)dao层的方法和mapper.xml中的方法不一样; (2)mapper中的namespace 值 和对应的dao层entity层不一致 &…...
JavaScript 代码规范
所有的 JavaScript 项目适用同一种规范。JavaScript 代码规范代码规范通常包括以下几个方面:变量和函数的命名规则空格,缩进,注释的使用规则。其他常用规范……规范的代码可以更易于阅读与维护。代码规范一般在开发前规定,可以跟你的团队成员…...
6综合项目 旅游网 【6.我的收藏和收藏排行榜】
我的收藏分析先登录→拿到当前登录的用户信息,从数据库中获取uid和对应uid的rid集合→将rid集合信息展示到我的收藏前台代码判断用户是否登录,传递uid,通过uid查找其对应的rid集合当查询的属性涉及到多张表,则必须使用多表连接&am…...
openpnp - error - 微调mark点坐标后,更新板子其他原件其他坐标报错的变通方法
文章目录openpnp - error - 微调mark点坐标后,更新板子其他原件其他坐标报错的变通方法概述想出来一个变通的方法ENDopenpnp - error - 微调mark点坐标后,更新板子其他原件其他坐标报错的变通方法 概述 载入坐标文件后, 指定左下角远点坐标, 然后定位板子上的3个Mark点, 因为…...
借助ChatGPT爆火,股价暴涨又暴跌后,C3.ai仍面临巨大风险
来源:猛兽财经 作者:猛兽财经 C3.ai的股价 作为一家人工智能技术提供商,C3.ai(AI)的股价曾在2021年初随着炒作情绪的增加,达到了历史最高点,但自那以后其股价就下跌了90%,而且炒作情…...
蓝桥杯-数位排序
蓝桥杯-数位排序1、问题描述2、解题思路3、代码实现1、问题描述 小蓝对一个数的数位之和很感兴趣, 今天他要按照数位之和给数排序。当 两个数各个数位之和不同时, 将数位和较小的排在前面, 当数位之和相等时, 将数值小的排在前面。 例如, 2022 排在 409 前面, 因为 2022 的数位…...
【ES实战】ES 插件包离线安装(本地文件)
ES 插件包离线安装(本地文件) 文章目录ES 插件包离线安装(本地文件)使用安装命令安装直接解压式验证安装情况常用的分词插件analysis-ik analysis-pinyin analysis-dynamic-synonym 在集群的节点上分发插件的ZIP安装包 使用安…...
Spring的核心基础——IOC与DI
文章目录一、Spring简介1 Spring介绍1.1 为什么要学1.2 学什么2 初识Spring2.1 Spring家族2.2 Spring发展史3 Spring体系结构3.1 Spring Framework系统架构图4 Spring核心概念问题导入4.1 核心概念二、IOC和DI入门1 IOC入门问题导入1.1 门案例思路分析1.2 实现步骤1.3 实现代码…...
C++正则表达式基础
文章目录1. 查找第一个匹配的2. 查找所有结果3. 打印匹配结果的上下文4. 使用子表达式5. 查找并替换注意: .(点)在括号中没有特殊含义,无需转义用\转义。 1. 查找第一个匹配的 #include <iostream> #include <regex>using names…...
如何在网络安全中使用人工智能并避免受困于此
人工智能在网络安全中的应用正在迅速增长,并对威胁检测、事件响应、欺诈检测和漏洞管理产生了重大影响。根据Juniper Research的一份报告,预计到2023年,使用人工智能进行欺诈检测和预防将为企业每年节省110亿美元。但是,如何将人工…...
生态 | 人大金仓与超聚变的多个产品完成兼容认证
近日,人大金仓与超聚变数字技术有限公司(简称“超聚变”)完成了多款产品的兼容互认测试。测试表明,人大金仓KingbaseES V8数据库与超聚变服务器操作系统FusionOS、超聚变FusionOne基础设施完全兼容,人大金仓异构数据同…...
4自由度串联机械臂按颜色分拣物品功能的实现
1. 功能说明 本实验要实现的功能是:将黑、白两种颜色的工件分别放置在传感器上时,机械臂会根据检测到的颜色,将工件搬运至写有相应颜色字样区域。 2. 使用样机 本实验使用的样机为4自由度串联机械臂。 3. 运动功能实现 3.1 电子硬件 在这个…...
玩转结构体---【C语言】
⛩️博主主页:威化小餅干📝系列专栏:【C语言】藏宝图🎏 ✨绳锯⽊断,⽔滴⽯穿!一个编程爱好者的学习记录!✨目录结构体类型的声明结构体成员访问结构体传参前言我们是否有想过,为什么会有结构体呢…...
c语言指针怎么理解 第二部分
第四,指针有啥用。 比方说,我们有个函数,如下: int add(int x){ return (x1); //把输入的值加1并返回结果。 } 好了,应用的时候是这样的: { int a1; aadd(a); //add函数返回的是a1 //现在 a等于…...
GC简介和监控调优
GC简介: GC(Garbage Collection)是java中的垃圾回收机制,是Java与C/C的主要区别之一,在使用JAVA的时候,一般不需要专门编写内存回收和垃圾清理代 码。这是因为在Java虚拟机中,存在自动内存管理和垃圾清扫机制。 什么…...
Understanding The Linux Kernel --- Part2 Memory Addressing
内存寻址 操作系统自身不必完全了解物理内存,如今的微处理器包含的硬件线路使内存管理既高效又健壮,所以编程错误就不会对该程序之外的内存产生非法访问 x86如何进行芯片级内存寻址Linux如何利用寻址硬件 x86 三种不同的地址术语 逻辑地址 逻辑地址…...
基于算法竞赛的c++编程(28)结构体的进阶应用
结构体的嵌套与复杂数据组织 在C中,结构体可以嵌套使用,形成更复杂的数据结构。例如,可以通过嵌套结构体描述多层级数据关系: struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...
云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地
借阿里云中企出海大会的东风,以**「云启出海,智联未来|打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办,现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...
Golang dig框架与GraphQL的完美结合
将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用,可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器,能够帮助开发者更好地管理复杂的依赖关系,而 GraphQL 则是一种用于 API 的查询语言,能够提…...
第25节 Node.js 断言测试
Node.js的assert模块主要用于编写程序的单元测试时使用,通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试,通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...
AspectJ 在 Android 中的完整使用指南
一、环境配置(Gradle 7.0 适配) 1. 项目级 build.gradle // 注意:沪江插件已停更,推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...
Fabric V2.5 通用溯源系统——增加图片上传与下载功能
fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...
Mysql8 忘记密码重置,以及问题解决
1.使用免密登录 找到配置MySQL文件,我的文件路径是/etc/mysql/my.cnf,有的人的是/etc/mysql/mysql.cnf 在里最后加入 skip-grant-tables重启MySQL服务 service mysql restartShutting down MySQL… SUCCESS! Starting MySQL… SUCCESS! 重启成功 2.登…...
STM32HAL库USART源代码解析及应用
STM32HAL库USART源代码解析 前言STM32CubeIDE配置串口USART和UART的选择使用模式参数设置GPIO配置DMA配置中断配置硬件流控制使能生成代码解析和使用方法串口初始化__UART_HandleTypeDef结构体浅析HAL库代码实际使用方法使用轮询方式发送使用轮询方式接收使用中断方式发送使用中…...
Python+ZeroMQ实战:智能车辆状态监控与模拟模式自动切换
目录 关键点 技术实现1 技术实现2 摘要: 本文将介绍如何利用Python和ZeroMQ消息队列构建一个智能车辆状态监控系统。系统能够根据时间策略自动切换驾驶模式(自动驾驶、人工驾驶、远程驾驶、主动安全),并通过实时消息推送更新车…...
【网络安全】开源系统getshell漏洞挖掘
审计过程: 在入口文件admin/index.php中: 用户可以通过m,c,a等参数控制加载的文件和方法,在app/system/entrance.php中存在重点代码: 当M_TYPE system并且M_MODULE include时,会设置常量PATH_OWN_FILE为PATH_APP.M_T…...
