以图搜图服务快速搭建
以图搜图服务快速搭建
电商公司,管理的商品少则几千,多则上百万。如何帮助用户从多如牛毛的商品中找到类似的商品就成了问题。
以图搜图就可以很好的帮助解决这个问题,通过 Towhee(resnet50 模型) + Milvus 如何实现本地环境搭建以图搜图。
Towhee 负责解析图片的特征向量,Milvus 负责存储特征向量然后进行向量查询。
Milvus Bootcamp 提供了很多解决方案 ,https://milvus.io/bootcamp/

其中就包含以图搜图的解决方案,根据图片相视度解决方案demo,这里实现了比较时候适合公司前后的分离环境的开箱即用的api实现。
配合前端大致效果如下:

包含如下接口
API接口
1.创建数据库
不同数据库对应不同的图片数据集合
Request
- Method: POST
- URL:
/milvus/img/table?table={tablename}- 创建test数据集:
/milvus/img/table?table=test
- 创建test数据集:
- Headers:
Response
- Body
{"code": 10000,"message": "Successfully","data": null
}
2.新增图片
新增图片支持 base64 和url新增
Request
- Method: POST
- URL:
/milvus/img/add- test 数据集新增图片数据:
/milvus/img/add
- test 数据集新增图片数据:
- Headers: Content-Type:application/json
- Body:
{"tags": "风景|标签","table": "test","brief":"{\"title\":\"hello world\"} 这里存一些属性","image": "base64(和url二选一,image优先级更高) ","url":"http:///xxx.jpp"
}
Response
- Body
{"code": 10000,"message": "Successfully","data": "8 返回数据id"
}
3.更新图片
更新图片支持 base64 和url,根据id进行更新
Request
- Method: POST
- URL:
/milvus/img/update - Headers: Content-Type:application/json
- Body:
{"id":"1 必填","tags": "风景|标签","table": "test","brief":"{\"title\":\"hello world\"} 这里存一些属性","image": "base64(和url二选一,image优先级更高) ","url":"http:///xxx.jpp"
}
Response
- Body
{"code": 10000,"message": "Successfully","data": "8 返回数据id"
}
4.以图搜图
根据图片搜索相似图片
Request
- Method: POST
- URL:
/milvus/img/search - Headers: Content-Type:application/json
- Body:
{"TOP_K": "2 查询多少个相似图","table": "test","url": "https://img.kakaclo.com/image%2FFSZW09057%2FFSZW09057_R_S_NUB%2F336bd601dfec33925ba1c581908b6c1e.jpg","image": "base64(和url二选一,image优先级更高) ",
}
Response
- Body
{"code": 10000,"message": "Successfully","data": [{"id": 513552,"tags": "","brief": "","distance": 0.00015275638725142926},{"id": 93,"tags": "","brief": "","distance": 0.0001584545971127227}]
}
distance 越小相似度越高。
5.删除图片
根据id删除
Request
- Method: POST
- URL:
/milvus/img/delete?id={id}&table={table}- 删除test表id为6的数据
/milvus/img/delete?id=6&table=test
- 删除test表id为6的数据
- Headers:
- Body:
Response
- Body
{"code": 10000,"message": "Successfully"
}
6.删除整个数据集
删除milvus的和mysql的表,这个接口慎用,mysql和milvus数据会全部清除。
Request
- Method: POST
- URL:
/milvus/img/drop?table={table}- 删除test数据集:
/milvus/img/drop?table=test
- 删除test数据集:
- Headers:
- Body:
Response
- Body
{"code": 10000,"message": "Successfully"
}
7.重新加载已经解析出特征的数据到milvus
这个在milvus升级、迁移和milvus数据损坏的情况下使用
可以将数据集对应的mysql表upload_status更新为0进行重新入milvus。
Request
- Method: POST
- URL:
/milvus/img/load?table={table}- 将test mysql笔中upload_status为0的数据重新加载到milvus中:
/milvus/img/load??table=test
- 将test mysql笔中upload_status为0的数据重新加载到milvus中:
- Headers:
- Body:
Response
- Body
{"code": 10000,"message": "Successfully"
}
快速实践
环境安装
首先我们先有如下环境 python3,mysql,Milvus
python3,mysql就不多说了
Milvus 参考 https://milvus.io/docs/v2.1.x/install_standalone-docker.md
源码
https://github.com/AndsGo/reverse_image_search
配置
找到config.py
替换对应的 MILVUS 配置T 和 MYSQL配置
import os############### Milvus Configuration ###############
MILVUS_HOST = os.getenv("MILVUS_HOST", "127.0.0.1")
MILVUS_PORT = int(os.getenv("MILVUS_PORT", "19530"))
VECTOR_DIMENSION = int(os.getenv("VECTOR_DIMENSION", "2048"))
INDEX_FILE_SIZE = int(os.getenv("INDEX_FILE_SIZE", "1024"))
METRIC_TYPE = os.getenv("METRIC_TYPE", "L2")
DEFAULT_TABLE = os.getenv("DEFAULT_TABLE", "milvus_img_search")
TOP_K = int(os.getenv("TOP_K", "10"))############### MySQL Configuration ###############
MYSQL_HOST = os.getenv("MYSQL_HOST", "127.0.0.1")
MYSQL_PORT = int(os.getenv("MYSQL_PORT", "3306"))
MYSQL_USER = os.getenv("MYSQL_USER", "root")
MYSQL_PWD = os.getenv("MYSQL_PWD", "123456")
MYSQL_DB = os.getenv("MYSQL_DB", "milvus")
ERP_MYSQL_TABLE = os.getenv("ERP_MYSQL_TABLE", "milvus_img_search")############### Data Path ###############
UPLOAD_PATH = os.getenv("UPLOAD_PATH", "tmp/search-images")DATE_FORMAT = os.getenv("DATE_FORMAT", "%Y-%m-%d %H:%M:%S")############### Number of log files ###############
LOGS_NUM = int(os.getenv("logs_num", "0"))
数据库表结构 ,表是自动生成的
CREATE TABLE `test` (`id` bigint(20) unsigned NOT NULL AUTO_INCREMENT COMMENT '主键ID',`milvus_id` bigint(20) DEFAULT NULL COMMENT 'milvus 数据id',`tags` varchar(32) CHARACTER SET utf8mb4 DEFAULT NULL COMMENT '标识',`brief` varchar(500) CHARACTER SET utf8mb4 DEFAULT NULL COMMENT '图片摘要',`upload_status` tinyint(2) DEFAULT '0' COMMENT '0 待上传到milvus 1成功上传到milvus',`feature` mediumtext CHARACTER SET utf8mb4 COLLATE utf8mb4_bin COMMENT '图片特征向量',`create_date` datetime(3) DEFAULT CURRENT_TIMESTAMP(3) COMMENT '创建时间',`modify_date` datetime(3) DEFAULT CURRENT_TIMESTAMP(3) ON UPDATE CURRENT_TIMESTAMP(3) COMMENT '修改时间',PRIMARY KEY (`id`),KEY `idx_tags` (`tags`) USING BTREE,KEY `idx_milvus_id` (`milvus_id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='图片上传记录表';
启动
sh start_server.sh
Attu
https://milvus.io/docs/attu.md
Attu是 Milvus 的高效开源管理工具,提供了GUI显示

原文:
相关文章:
以图搜图服务快速搭建
以图搜图服务快速搭建 电商公司,管理的商品少则几千,多则上百万。如何帮助用户从多如牛毛的商品中找到类似的商品就成了问题。 以图搜图就可以很好的帮助解决这个问题,通过 Towhee(resnet50 模型) Milvus 如何实现本…...
【TensorFlow安装踩坑记录】
TensorFlow安装踩坑记录第一步,切换服务器cuda版本第二步,conda安装tensorflow记录一下最近安装Tensorflow v1时遇到的问题和解决办法第一步,切换服务器cuda版本 首先我想安装tensorflow 1.13.1,兼容的cuda版本是10.0,…...
03.03回溯法
class Solution { public:vector<int> temp;vector<vector<int>> ans;void dfs(int cur,int n,int k){//剪枝 temp 长度加上区间 [cur, n] 的长度小于 k,不可能构造出长度为 k 的 tempif(temp.size()(n-cur1)<k){return;}if(temp.size()k){ans…...
I.MX6ULL内核开发0:linux内核模块
目录 简要 一、内核模块的概念 二、内核模块加载、卸载过程 简要 1、内核模块的概念 2、内核模块的原理:内核模块在内核的加载、卸载过程。 一、内核模块的概念 内核,是一个操作系统的核心。是基于硬件的第一层软件扩充,提供操作系统的最…...
qsort快速排序的实现以及模拟实现qsort的功能(狠狠的拿捏)
当你为错过太阳而哭泣的时候,你也要再错过群星了。 --泰戈尔 目录 一.qsort快速排序的实现 二.模拟实现一个qsort功能的函数 一.qsort快速排序的实现 下面是 qsort() 函数的声明: void qsort(void *base, size_t nitems, size_t size, int (…...
[Java·算法·中等]LeetCode215. 数组中的第K个最大元素
每天一题,防止痴呆题目示例分析思路1题解1分析思路2题解2分析思路3题解3👉️ 力扣原文 题目 给定整数数组 nums 和整数 k,请返回数组中第 k 个最大的元素。 请注意,你需要找的是数组排序后的第 k 个最大的元素,而不…...
xgboost:算法数学原理
xgboost算法数学原理 1、求预测值 y^iϕ(xi)∑k1Kfk(xi),fk∈F,(1)\hat{y}_i\phi\left(\mathbf{x}_i\right)\sum_{k1}^K f_k\left(\mathbf{x}_i\right), \quad f_k \in \mathcal{F},\tag{1} y^iϕ(xi)k1∑Kfk(xi),fk∈F,(1) F{f(x)wq(x)}(q:Rm→T,w∈RT)\mathca…...
map、multimap、unordered_map
引用:windows程序员面试指南 map map 红黑树 map 对value值无要求 map 有序,按照key值自动排序 map key值唯一 map 头文件:#include map 支持重载[]的运算符 map 为保持有序性,erase()开销大 multimap multimap 红黑树 multim…...
2023年全国最新会计专业技术资格精选真题及答案11
百分百题库提供会计专业技术资格考试试题、会计考试预测题、会计专业技术资格考试真题、会计证考试题库等,提供在线做题刷题,在线模拟考试,助你考试轻松过关。 一、选择题 1.下列各项中,仅将生产过程中消耗的变动成本计入产品成本…...
Centos7搭建NFS
1.NFS简介Network File System(网络文件系统,通过网络让不同的机器系统之间可以彼此共享文件和目录,类似Samba服务。2.NFS挂载原理 在网络中服务器和客户端进行连接都是通过端口进行数据传输,而NFS服务端的端口是随机的,从而导致N…...
ThreadLoca基本使用以及与synchronized的区别
文章目录1. ThreadLocal介绍1.1 官方介绍1.2 基本使用1.2.1 常用方法1.2.2 使用案例1.3 ThreadLocal类与synchronized关键字1.3.1 synchronized同步方式1.3.2 ThreadLocal与synchronized的区别2. 运用场景_事务案例2.1 转账案例2.1.1 场景构建2.1.2 引入事务2.2 常规解决方案2.…...
【C++】纯虚函数、纯虚析构
纯虚函数语法:virtual 返回值类型 函数名(参数列表) 0纯虚函数的作用:不用定义!在多态中,通常父类中虚函数的实现是无意义的(因为主要用子类重写的,父类只是为了派生子类当做一个类族的顶层出现࿰…...
Python 进阶小技巧:7招展开嵌套列表
大家好,今天给大家讲解一个Python的进阶知识点:如何将一个嵌套的大列表展开形成一个列表。 小编提供了7种方法供大家学习参考: for循环 列表推导式 使用第三方库itertools 使用sum函数 python自加() 使用extend函…...
【Spring6】| Bean的作用域
目录 一:Bean的作用域 1. singleton(单例) 2. prototype(多例) 3. 其它scope 4. 自定义scop(了解) 一:Bean的作用域 1. singleton(单例) (1…...
Qt界面美化之自定义qss样式表
原生的QT界面不好看,有时候需要根据美工的设计图修改样式。如果使用QML的话搞界面是快,但是QML有点儿吃内存,有时简单的功能还是用传统c的widget方便些。好在有qss,传统界面也可以美化的。QSS称为Qt Style Sheets也就是Qt样式表&a…...
春招进行时:“211文科硕士吐槽工资5500” HR:行情和能力决定价值
学历重要,还是能力重要? 春招进行时,不少学生求职遇冷,会把原因归结为学历水平不够高、毕业院校不够档次、专业不够热门、非一线城市就业机会少等等。 直到上海一位211大学的文科男硕士,吐槽招聘会提供的岗位薪资待遇…...
【DaVinci Developer专题】-45-自动生成SWC中所有Runnable对应的C文件
点击返回「Autosar从入门到精通-实战篇」总目录 案例背景(共5页精讲): 在DaVinci Developer中,以Test_A_SWC的Runnable为例,见图0-1。我们现在尝试自动生成一个包含Test_A_SWC_Init和Test_A_SWC_Main函数原型(也是适用于 C/S Port Serve Runnable)的C文件。 图0-1 目…...
redis启动和关闭服务脚本
编译安装redis,自己写了个脚本。 简单实现启动、关闭和 查看redis服务。 基本流程如下: 脚本执行,必须附带1个参数,没有参数会提示附带参数。 脚本会获取redis-server进程数量。作为开启、关闭以及查看redis服务的数据依据。 …...
windows CMD快捷键:
🐱个人主页:莎萌玩家🙋♂️作者简介:全栈领域新星创作者、专注于全栈各领域技术,共同学习共同进步,一起加油呀!💫系列专栏:网络爬虫、WEB全栈开发📢资料领取…...
【C/C++语言】刷题|双指针|数组|单链表
主页:114514的代码大冒 qq:2188956112(欢迎小伙伴呀hi✿(。◕ᴗ◕。)✿ ) Gitee:庄嘉豪 (zhuang-jiahaoxxx) - Gitee.com 文章目录 目录 文章目录 前言 一、删除有序数组中的重复项 二、合并两个有序数组 三,移除…...
Java 语言特性(面试系列2)
一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...
Oracle查询表空间大小
1 查询数据库中所有的表空间以及表空间所占空间的大小 SELECTtablespace_name,sum( bytes ) / 1024 / 1024 FROMdba_data_files GROUP BYtablespace_name; 2 Oracle查询表空间大小及每个表所占空间的大小 SELECTtablespace_name,file_id,file_name,round( bytes / ( 1024 …...
【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器
——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的一体化测试平台,覆盖应用全生命周期测试需求,主要提供五大核心能力: 测试类型检测目标关键指标功能体验基…...
家政维修平台实战20:权限设计
目录 1 获取工人信息2 搭建工人入口3 权限判断总结 目前我们已经搭建好了基础的用户体系,主要是分成几个表,用户表我们是记录用户的基础信息,包括手机、昵称、头像。而工人和员工各有各的表。那么就有一个问题,不同的角色…...
vue3 字体颜色设置的多种方式
在Vue 3中设置字体颜色可以通过多种方式实现,这取决于你是想在组件内部直接设置,还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法: 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...
python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)
更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...
论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)
笔记整理:刘治强,浙江大学硕士生,研究方向为知识图谱表示学习,大语言模型 论文链接:http://arxiv.org/abs/2407.16127 发表会议:ISWC 2024 1. 动机 传统的知识图谱补全(KGC)模型通过…...
uniapp微信小程序视频实时流+pc端预览方案
方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度WebSocket图片帧定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐RTMP推流TRTC/即构SDK推流❌ 付费方案 (部分有免费额度&#x…...
相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...
三体问题详解
从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...
