关于“Python”的核心知识点整理大全47
目录
16.1.10 错误检查
highs_lows.py
highs_lows.py
16.2 制作世界人口地图:JSON 格式
16.2.1 下载世界人口数据
16.2.2 提取相关的数据
population_data.json
world_population.py
16.2.3 将字符串转换为数字值
world_population.py
2world_population.py
16.2.4 获取两个字母的国别码
countries.py
country_codes.py
往期快速传送门👆(在文章最后):
感谢大家的支持!欢迎订阅收藏!专栏将持续更新!
16.1.10 错误检查
我们应该能够使用有关任何地方的天气数据来运行highs_lows.py中的代码,但有些气象站会 偶尔出现故障,未能收集部分或全部其应该收集的数据。缺失数据可能会引发异常,如果不妥善 地处理,还可能导致程序崩溃。 例如,我们来看看生成加利福尼亚死亡谷的气温图时出现的情况。将文件death_valley_ 2014.csv复制到本章程序所在的文件夹,再修改highs_lows.py,使其生成死亡谷的气温图:
highs_lows.py
--snip--
# 从文件中获取日期、最高气温和最低气温
filename = 'death_valley_2014.csv'
with open(filename) as f:
--snip--
运行这个程序时,出现了一个错误,如下述输出的最后一行所示:
Traceback (most recent call last):File "highs_lows.py", line 17, in <module>high = int(row[1])
ValueError: invalid literal for int() with base 10: ''
该traceback指出,Python无法处理其中一天的最高气温,因为它无法将空字符串(' ')转换 为整数。只要看一下death_valley_2014.csv,就能发现其中的问题:
2014-2-16,,,,,,,,,,,,,,,,,,,0.00,,,-1
其中好像没有记录2014年2月16日的数据,表示最高温度的字符串为空。为解决这种问题, 我们在从CSV文件中读取值时执行错误检查代码,对分析数据集时可能出现的异常进行处理,如 下所示:
highs_lows.py
--snip--
# 从文件中获取日期、最高气温和最低气温
filename = 'death_valley_2014.csv'
with open(filename) as f:reader = csv.reader(f)header_row = next(reader)dates, highs, lows = [], [], []for row in reader:
1 try:current_date = datetime.strptime(row[0], "%Y-%m-%d")high = int(row[1])low = int(row[3])except ValueError:
2 print(current_date, 'missing data')else:
3 dates.append(current_date)highs.append(high)lows.append(low)
#根据数据绘制图形
--snip--
#设置图形的格式
4 title = "Daily high and low temperatures - 2014\nDeath Valley, CA"
plt.title(title, fontsize=20)
--snip--
对于每一行,我们都尝试从中提取日期、最高气温和最低气温(见1)。只要缺失其中一项 数据,Python就会引发ValueError异常,而我们可这样处理:打印一条错误消息,指出缺失数据 的日期(见2)。打印错误消息后,循环将接着处理下一行。如果获取特定日期的所有数据时没 有发生错误,将运行else代码块,并将数据附加到相应列表的末尾(见3)。鉴于我们绘图时使 用的是有关另一个地方的信息,我们修改了标题,在图表中指出了这个地方(见4)。 如果你现在运行highs_lows.py,将发现缺失数据的日期只有一个:
2014-02-16 missing data
将这个图表与锡特卡的图表对比可知,总体而言,死亡谷比阿拉斯加东南部暖和,这可能符 合预期,但这个沙漠中每天的温差也更大,从着色区域的高度可以明显看出这一点。
使用的很多数据集都可能缺失数据、数据格式不正确或数据本身不正确。对于这样的情形, 可使用本书前半部分介绍的工具来处理。在这里,我们使用了一个try-except-else代码块来处理 数据缺失的问题。在有些情况下,需要使用continue来跳过一些数据,或者使用remove()或del 将已提取的数据删除。可采用任何管用的方法,只要能进行精确而有意义的可视化就好。
16.2 制作世界人口地图:JSON 格式
在本节中,你将下载JSON格式的人口数据,并使用json模块来处理它们。Pygal提供了一个 适合初学者使用的地图创建工具,你将使用它来对人口数据进行可视化,以探索全球人口的分布 情况。
16.2.1 下载世界人口数据
将文件population_data.json复制到本章程序所在的文件夹中,这个文件包含全球大部分国家 1960~2010年的人口数据。Open Knowledge Foundation(http://data.okfn.org/)提供了大量可以免 费使用的数据集,这些数据就来自其中一个数据集。
16.2.2 提取相关的数据
我们来研究一下population_data.json,看看如何着手处理这个文件中的数据:
population_data.json
[{"Country Name": "Arab World","Country Code": "ARB","Year": "1960","Value": "96388069"}, {"Country Name": "Arab World","Country Code": "ARB","Year": "1961","Value": "98882541.4"},--snip--
]
这个文件实际上就是一个很长的Python列表,其中每个元素都是一个包含四个键的字典:国 家名、国别码、年份以及表示人口数量的值。我们只关心每个国家2010年的人口数量,因此我们 首先编写一个打印这些信息的程序:
world_population.py
import json
# 将数据加载到一个列表中
filename = 'population_data.json'
with open(filename) as f:
1 pop_data = json.load(f)
# 打印每个国家2010年的人口数量
2 for pop_dict in pop_data:
3 if pop_dict['Year'] == '2010':
4 country_name = pop_dict['Country Name']population = pop_dict['Value']print(country_name + ": " + population)
我们首先导入了模块json,以便能够正确地加载文件中的数据,然后,我们将数据存储在 pop_data中(见)。函数json.load()将数据转换为Python能够处理的格式,这里是一个列表。 在处,我们遍历pop_data中的每个元素。每个元素都是一个字典,包含四个键—值对,我们将 每个字典依次存储在pop_dict中。 在处,我们检查字典的'Year'键对应的值是否是2010(由于population_data.json中的值都是 用引号括起的,因此我们执行的是字符串比较)。如果年份为2010,我们就将与'Country Name' 相关联的值存储到country_name中,并将与'Value'相关联的值存储在population中(见)。接下 来,我们打印每个国家的名称和人口数量。 输出为一系列国家的名称和人口数量:
Arab World: 357868000
Caribbean small states: 6880000
East Asia & Pacific (all income levels): 2201536674
--snip--
Zimbabwe: 12571000
我们捕获的数据并非都包含准确的国家名,但这开了一个好头。现在,我们需要将数据转换为Pygal能够处理的格式。
16.2.3 将字符串转换为数字值
population_data.json中的每个键和值都是字符串。为处理这些人口数据,我们需要将表示人 口数量的字符串转换为数字值,为此我们使用函数int():
world_population.py
--snip--
for pop_dict in pop_data:if pop_dict['Year'] == '2010':country_name = pop_dict['Country Name']
1 population = int(pop_dict['Value'])
2 print(country_name + ": " + str(population))
在1处,我们将每个人口数量值都存储为数字格式。打印人口数量值时,需要将其转换为字 符串(见2)。 然而,对于有些值,这种转换会导致错误,如下所示:
Arab World: 357868000
Caribbean small states: 6880000
East Asia & Pacific (all income levels): 2201536674
--snip--
Traceback (most recent call last):File "print_populations.py", line 12, in <module>population = int(pop_dict['Value'])
1 ValueError: invalid literal for int() with base 10: '1127437398.85751'
原始数据的格式常常不统一,因此经常会出现错误。导致上述错误的原因是,Python不能直 接将包含小数点的字符串'1127437398.85751'转换为整数(这个小数值可能是人口数据缺失时通 过插值得到的)。为消除这种错误,我们先将字符串转换为浮点数,再将浮点数转换为整数:
2world_population.py
--snip--
for pop_dict in pop_data:if pop_dict['Year'] == '2010':country = pop_dict['Country Name']population = int(float(pop_dict['Value']))print(country + ": " + str(population))
函数float()将字符串转换为小数,而函数int()丢弃小数部分,返回一个整数。现在,我们 可以打印2010年的完整人口数据,不会导致错误了:
Arab World: 357868000
Caribbean small states: 6880000
East Asia & Pacific (all income levels): 2201536674
--snip--
Zimbabwe: 12571000
每个字符串都成功地转换成了浮点数,再转换为整数。以数字格式存储人口数量值后,就可 以使用它们来制作世界人口地图了。
16.2.4 获取两个字母的国别码
制作地图前,还需要解决数据存在的最后一个问题。Pygal中的地图制作工具要求数据为特 定的格式:用国别码表示国家,以及用数字表示人口数量。处理地理政治数据时,经常需要用到 几个标准化国别码集。population_data.json中包含的是三个字母的国别码,但Pygal使用两个字母 的国别码。我们需要想办法根据国家名获取两个字母的国别码。 Pygal使用的国别码存储在模块i18n(internationalization的缩写)中。字典COUNTRIES包含的 键和值分别为两个字母的国别码和国家名。要查看这些国别码,可从模块i18n中导入这个字典, 并打印其键和值:
countries.py
from pygal.i18n import COUNTRIES
1 for country_code in sorted(COUNTRIES.keys()):print(country_code, COUNTRIES[country_code])
在上面的for循环中,我们让Python将键按字母顺序排序(见),然后打印每个国别码及其 对应的国家:
ad Andorra
ae United Arab Emirates
af Afghanistan
--snip--
zw Zimbabwe
为获取国别码,我们将编写一个函数,它在COUNTRIES中查找并返回国别码。我们将这个函 数放在一个名为country_codes的模块中,以便能够在可视化程序中导入它:
country_codes.py
from pygal.i18n import COUNTRIES
1 def get_country_code(country_name):"""根据指定的国家,返回Pygal使用的两个字母的国别码"""
3 for code, name in COUNTRIES.items():
if name == country_name:return code# 如果没有找到指定的国家,就返回None
4 return None
print(get_country_code('Andorra'))
print(get_country_code('United Arab Emirates'))
print(get_country_code('Afghanistan'))
关于“Python”的核心知识点整理大全37-CSDN博客
关于“Python”的核心知识点整理大全25-CSDN博客
关于“Python”的核心知识点整理大全12-CSDN博客
往期快速传送门👆(在文章最后):
感谢大家的支持!欢迎订阅收藏!专栏将持续更新!
相关文章:

关于“Python”的核心知识点整理大全47
目录 16.1.10 错误检查 highs_lows.py highs_lows.py 16.2 制作世界人口地图:JSON 格式 16.2.1 下载世界人口数据 16.2.2 提取相关的数据 population_data.json world_population.py 16.2.3 将字符串转换为数字值 world_population.py 2world_population…...

Android 8.1 设置USB传输文件模式(MTP)
项目需求,需要在电脑端adb发送通知手机端接收指令,将USB的仅充电模式更改成传输文件(MTP)模式,便捷用户在我的电脑里操作内存文件,下面是我们的常见的修改方式 1、android12以下、android21以上是这种方式…...

模型量化 | Pytorch的模型量化基础
官方网站:Quantization — PyTorch 2.1 documentation Practical Quantization in PyTorch | PyTorch 量化简介 量化是指执行计算和存储的技术 位宽低于浮点精度的张量。量化模型 在张量上执行部分或全部操作,精度降低,而不是 全精度…...
adb和logcat常用命令
adb的作用 adb构成 client端,在电脑上,负责发送adb命令daemon守护进程adbd,在手机上,负责接收和执行adb命令server端,在电脑上,负责管理client和daemon之间的通信 adb工作原理 client端将命令发送给ser…...

千巡翼X4轻型无人机 赋能智慧矿山
千巡翼X4轻型无人机 赋能智慧矿山 传统的矿山测绘需要大量测绘员通过采用手持RTK、全站仪对被测区域进行外业工作,再通过方格网法、三角网法、断面法等进行计算,需要耗费大量人力和时间。随着无人机航测技术的不断发展,利用无人机作业可以大…...
【Android 13】使用Android Studio调试系统应用之Settings移植(一):编译服务器的配置、AOSP源码的下载、编译、运行
文章目录 1. 篇头语2. 系列文章3. ubuntu 最佳版本3.1 下载并安装3.2 配置AOSP工具链3.3 配置Python多版本支持4. AOSP源码下载4.1 配置repo工具4.2 源码下载5. AOSP编译5.1 添加emulator模拟器配置5.1.1 哪些是支持模拟器的Products?5.1.2 添加方法5.2 编译...

【1】Docker详解与部署微服务实战
Docker 详解 Docker 简介 Docker 是一个开源的容器化平台,可以帮助开发者将应用程序和其依赖的环境打包成一个可移植、可部署的容器。Docker 的主要目标是通过容器化技术实现应用程序的快速部署、可移植性和可扩展性,从而简化应用程序的开发、测试和部…...
C# JsonString转Object以及Object转JsonString
主要讲述了两种方法的转换,最后提供了格式化输出JsonString字符串。 需要引用程序集 System.Web.Extensions.dll、Newtonsoft.Json.dll System.Web.Extensions.dll可直接在程序集中引用,Newtonsoft.Json.dll需要在NuGet中下载引用。 详细代码…...
华为OD机试真题-中文分词模拟器-2023年OD统一考试(C卷)
题目描述: 给定一个连续不包含空格字符串,该字符串仅包含英文小写字母及英文文标点符号(逗号、分号、句号),同时给定词库,对该字符串进行精确分词。 说明: 1.精确分词: 字符串分词后,不会出现重叠。即“ilovechina” ,不同词库可分割为 “i,love,china” “ilove,c…...

【并发设计模式】聊聊 基于Copy-on-Write模式下的CopyOnWriteArrayList
在并发编程领域,其实除了使用上一篇中的属性不可变。还有一种方式那就是针对读多写少的场景下。我们可以读不加锁,只针对于写操作进行加锁。本质上就是读写复制。读的直接读取,写的使用写一份数据的拷贝数据,然后进行写入。在将新…...
OpenCV中使用Mask R-CNN实现图像分割的原理与技术实现方案
本文详细介绍了在OpenCV中利用Mask R-CNN实现图像分割的原理和技术实现方案。Mask R-CNN是一种先进的深度学习模型,通过结合区域提议网络(Region Proposal Network)和全卷积网络(Fully Convolutional Network)…...

论文阅读《Rethinking Efficient Lane Detection via Curve Modeling》
目录 Abstract 1. Introduction 2. Related Work 3. BezierLaneNet 3.1. Overview 3.2. Feature Flip Fusion 3.3. End-to-end Fit of a Bezier Curve 4. Experiments 4.1. Datasets 4.2. Evalutaion Metics 4.3. Implementation Details 4.4. Comparisons 4.5. A…...

Leetcode—2660.保龄球游戏的获胜者【简单】
2023每日刷题(七十二) Leetcode—2660.保龄球游戏的获胜者 实现代码 class Solution { public:int isWinner(vector<int>& player1, vector<int>& player2) {long long sum1 0, sum2 0;int n player1.size();for(int i 0; i &…...
ubuntu服务器上安装KVM虚拟化
今天想着在ubuntu上来安装一个windwos操作系统,原因是因为我们楼上有几台不错的服务器,但是都是linux系统的。 今天我想着要给同事们搭建一个chatgpt环境,用来开发程序,但是ubuntu上其实也可以安装我嫌麻烦,刚好想折腾…...

SpreadJS 集成使用案例
SpreadJS 集成案例 介绍: SpreadJS 基于 HTML5 标准,支持跨平台开发和集成,支持所有主流浏览器,无需预装任何插件或第三方组件,以原生的方式嵌入各类应用,可以与各类后端技术框架相结合。SpreadJS 以 纯前…...
单挑力扣(LeetCode)SQL题:534. 游戏玩法分析 III(难度:中等)
题目:534. 游戏玩法分析 III (通过次数23,825 | 提交次数34,947,通过率68.17%) Table:Activity----------------------- | Column Name | Type | ----------------------- | player_id | int | | device_id | int…...

【OpenCV】告别人工目检:深度学习技术引领工业品缺陷检测新时代
目录 前言 机器视觉 缺陷检测 工业上常见缺陷检测方法 内容简介 作者简介 目录 读者对象 如何阅读本书 获取方式 前言 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。 点击跳转到网站 机器视觉…...

VR全景图片制作时有哪些技巧,VR全景图片能带来哪些好处
引言: VR全景图片是通过虚拟现实技术制作出的具有沉浸感的图片,能够提供给用户一种身临其境的感觉。在宣传方面,它有着独特的优势和潜力,能够帮助吸引更多的潜在客户,那么VR全景图片制作时有哪些技巧,VR全…...
【VUE】Flask+vue-element-admin前后端分离项目发布到linux服务器操作指南
目录 一、Flask后端发布环境搭建1.1 python环境第一步:安装python环境第二步:配置python虚拟环境 1.2 uwsgi环境1.3 nginx配置1.4 测试 二、VUE前端发布环境搭建2.1 配置修改2.2 打包上传服务器2.3 nginx配置2.3 测试 三、联合调试 一、Flask后端发布环境…...
django的gunicorn的异步任务执行
gunicorn 本身是一个WSGI HTTP服务器,用于运行Python的web应用,如Django项目。它并不直接提供执行异步任务的功能。异步任务通常是指那些你想要在web请求之外执行的后台任务,如发送电子邮件、处理长时间运行的计算或与外部API交互等。 在Dja…...

Linux 文件类型,目录与路径,文件与目录管理
文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:
一、属性动画概述NETX 作用:实现组件通用属性的渐变过渡效果,提升用户体验。支持属性:width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项: 布局类属性(如宽高)变化时&#…...
CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云
目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...

分布式增量爬虫实现方案
之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面,避免重复抓取,以节省资源和时间。 在分布式环境下,增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路:将增量判…...

Maven 概述、安装、配置、仓库、私服详解
目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...
基于Java Swing的电子通讯录设计与实现:附系统托盘功能代码详解
JAVASQL电子通讯录带系统托盘 一、系统概述 本电子通讯录系统采用Java Swing开发桌面应用,结合SQLite数据库实现联系人管理功能,并集成系统托盘功能提升用户体验。系统支持联系人的增删改查、分组管理、搜索过滤等功能,同时可以最小化到系统…...
JS手写代码篇----使用Promise封装AJAX请求
15、使用Promise封装AJAX请求 promise就有reject和resolve了,就不必写成功和失败的回调函数了 const BASEURL ./手写ajax/test.jsonfunction promiseAjax() {return new Promise((resolve, reject) > {const xhr new XMLHttpRequest();xhr.open("get&quo…...

DeepSeek越强,Kimi越慌?
被DeepSeek吊打的Kimi,还有多少人在用? 去年,月之暗面创始人杨植麟别提有多风光了。90后清华学霸,国产大模型六小虎之一,手握十几亿美金的融资。旗下的AI助手Kimi烧钱如流水,单月光是投流就花费2个亿。 疯…...
shell脚本质数判断
shell脚本质数判断 shell输入一个正整数,判断是否为质数(素数)shell求1-100内的质数shell求给定数组输出其中的质数 shell输入一个正整数,判断是否为质数(素数) 思路: 1:1 2:1 2 3:1 2 3 4:1 2 3 4 5:1 2 3 4 5-------> 3:2 4:2 3 5:2 3…...
【Redis】Redis从入门到实战:全面指南
Redis从入门到实战:全面指南 一、Redis简介 Redis(Remote Dictionary Server)是一个开源的、基于内存的键值存储系统,它可以用作数据库、缓存和消息代理。由Salvatore Sanfilippo于2009年开发,因其高性能、丰富的数据结构和广泛的语言支持而广受欢迎。 Redis核心特点:…...