当前位置: 首页 > news >正文

2023.12.28每日一题

LeetCode每日一题

2735.收集巧克力

2735. 收集巧克力 - 力扣(LeetCode)

介绍

看题目看不懂,在评论区看到一个大哥解释,瞬间明白了。

一张桌子上有n件商品围成一圈,每件都有一个价签,它们构成数组nums。除了按照价签上的价格买东西之外,你还可以花x块钱把桌子转一下,把每件商品都对应到下一个价签,问把每种商品买一遍最少花多少钱

给你一个长度为 n 、下标从 0 开始的整数数组 nums ,表示收集不同巧克力的成本。每个巧克力都对应一个不同的类型,最初,位于下标 i 的巧克力就对应第 i 个类型。

在一步操作中,你可以用成本 x 执行下述行为:

  • 同时修改所有巧克力的类型,将巧克力的类型 ith 修改为类型 ((i + 1) mod n)th

假设你可以执行任意次操作,请返回收集所有类型巧克力所需的最小成本。

示例 1:

输入:nums = [20,1,15], x = 5
输出:13
解释:最开始,巧克力的类型分别是 [0,1,2] 。我们可以用成本 1 购买第 1 个类型的巧克力。
接着,我们用成本 5 执行一次操作,巧克力的类型变更为 [1,2,0] 。我们可以用成本 1 购买第 2 个类型的巧克力。
然后,我们用成本 5 执行一次操作,巧克力的类型变更为 [2,0,1] 。我们可以用成本 1 购买第 0 个类型的巧克力。
因此,收集所有类型的巧克力需要的总成本是 (1 + 5 + 1 + 5 + 1) = 13 。可以证明这是一种最优方案。

示例 2:

输入:nums = [1,2,3], x = 4
输出:6
解释:我们将会按最初的成本收集全部三个类型的巧克力,而不需执行任何操作。因此,收集所有类型的巧克力需要的总成本是 1 + 2 + 3 = 6 。

提示:

  • 1 <= nums.length <= 1000
  • 1 <= nums[i] <= 109
  • 1 <= x <= 109

思路

LeetCode看的思路,自己没啥思路,还是说自己算法太垃圾,还需多练

nums数组表示购买对应索引类型的巧克力所需要的代价,可以通过每次以代价x来改变(平移)nums数组的分布。

由于nums数组的长度为n,那么进行n次平移操作之后,进入循环。因此有意义的平移操作最多为n-1次。

那么可以使用一个数组costNums来记录每个类型的巧克力,在{0,1,2, …, n-1}次操作过程中购买所需的最小值。在k次操作完成后,将costNums累加并加上k*x,得到操作k次完成购买所需的总代价。

最后,在{0,1,2,…,n-1}次操作中,选择具有最小代价的那次操作。

代码

C++
class Solution {
public:long long minCost(vector<int>& nums, int x) {int n = nums.size();vector<int> costNums(nums);  // 初始操作 0 次的成本long long totalCost = accumulate(costNums.begin(), costNums.end(), 0LL); // 初始总成本// enumerate 0 to n-1 times operationfor (int k=1; k<n; k++){// 根据当前操作更新 costNums 数组for (int i=0; i<n; i++) {costNums[i] = min(costNums[i], nums[(i+k)%n]);}// 计算当前操作的总成本并与之前的总成本进行比较,保留最小的totalCost = min(totalCost, accumulate(costNums.begin(), costNums.end(), 0LL) + static_cast<long long>(k)*x);}return totalCost;}
};
Java
class Solution {public long minCost(int[] nums, int x) {int n = nums.length;int[] costNums = Arrays.copyOf(nums, n); // 初始操作 0 次的成本long totalCost = Arrays.stream(costNums).asLongStream().sum(); // 初始总成本for (int k = 1; k < n; k++) {// 根据当前操作更新 costNums 数组for (int i = 0; i < n; i++) {costNums[i] = Math.min(costNums[i], nums[(i + k) % n]);}// 计算当前操作的总成本long currentCost = Arrays.stream(costNums).asLongStream().sum() + (long) k * x;// 如果当前成本更小,更新总成本totalCost = Math.min(totalCost, currentCost);}return totalCost;}
}

相关文章:

2023.12.28每日一题

LeetCode每日一题 2735.收集巧克力 2735. 收集巧克力 - 力扣&#xff08;LeetCode&#xff09; 介绍 看题目看不懂&#xff0c;在评论区看到一个大哥解释&#xff0c;瞬间明白了。 一张桌子上有n件商品围成一圈&#xff0c;每件都有一个价签&#xff0c;它们构成数组nums。…...

231227-9步在RHEL8.8配置本地yum源仓库

Seciton 1&#xff1a;参考视频 RHEL8配置本地yum源仓库-安徽迪浮_哔哩哔哩_bilibili Seciton 2&#xff1a;具体操作 &#x1f3af; 第1步&#xff1a;查看光驱文件/dev/sr0是否已经挂载&#xff1f;此处已挂在 [lgklocalhost ~]$ df -h &#x1f3af; 第1步&#xff1a;查看…...

5. 创建型模式 - 单例模式

亦称&#xff1a; 单件模式、Singleton 意图 单例模式是一种创建型设计模式&#xff0c; 让你能够保证一个类只有一个实例&#xff0c; 并提供一个访问该实例的全局节点。 问题 单例模式同时解决了两个问题&#xff0c; 所以违反了单一职责原则&#xff1a; 保证一个类只有一…...

机器学习之人工神经网络(Artificial Neural Networks,ANN)

人工神经网络(Artificial Neural Networks,ANN)是机器学习中的一种模型,灵感来源于人脑的神经网络结构。它由神经元(或称为节点)构成的层级结构组成,每个神经元接收输入并生成输出,这些输入和输出通过权重进行连接。 人工神经网络(ANN)是一种模仿生物神经系统构建的…...

GetLastError()详细介绍

GetLastError() 是 Windows 操作系统提供的一个函数&#xff0c;用于获取调用线程最近一次发生的错误码。这个函数的定义如下&#xff1a; DWORD GetLastError(void); 调用 GetLastError() 函数可以帮助开发人员在发生错误时获取错误的详细信息&#xff0c;从而进行适当的错…...

【unity3D-粒子系统】粒子系统主模块-Particle System篇

&#x1f497; 未来的游戏开发程序媛&#xff0c;现在的努力学习菜鸡 &#x1f4a6;本专栏是我关于游戏开发的学习笔记 &#x1f236;本篇是unity的粒子系统主模块-Particle System 基础知识 Particle System 介绍&#xff1a;粒子系统的主模块&#xff0c;是必需的模块&#x…...

Windows搭建FTP服务器教学以及计算机端口介绍

目录 一. FTP服务器介绍 FTP服务器是什么意思&#xff1f; 二.Windows Service 2012 搭建FTP服务器 1.开启防火墙 2.创建组 ​编辑3.创建用户 4.用户绑定组 5.安装ftp服务器 ​编辑6.配置ftp服务器 7.配置ftp文件夹的权限 8.连接测试 三.计算机端口介绍 什么是网络…...

安防视频监控系统EasyCVR实现H.265视频在3秒内起播的注意事项

可视化云监控平台/安防视频监控系统EasyCVR视频综合管理平台&#xff0c;采用了开放式的网络结构&#xff0c;可以提供实时远程视频监控、视频录像、录像回放与存储、告警、语音对讲、云台控制、平台级联、磁盘阵列存储、视频集中存储、云存储等丰富的视频能力&#xff0c;同时…...

CNN实现对手写字体的迭代

导入库 import torchvision import torch from torchvision.transforms import ToTensor from torch import nn import matplotlib.pyplot as plt 导入手写字体数据 train_dstorchvision.datasets.MNIST(data/,trainTrue,transformToTensor(),downloadTrue) test_dstorchvis…...

docker学习笔记01-安装docker

1.Docker的概述 用Go语言实现的开源应用项目&#xff08;container&#xff09;&#xff1b;克服操作系统的笨重&#xff1b;快速部署&#xff1b;只隔离应用程序的运行时环境但容器之间可以共享同一个操作系统&#xff1b;Docker通过隔离机制&#xff0c;每个容器间是互相隔离…...

【《设计模式之美》】如何取舍继承与组合

文章目录 什么情况下不推荐使用继承&#xff1f;组合相比继承有哪些优势&#xff1f;使用组合、继承的时机 本文主要想了解&#xff1a; 为什么组合优于继承&#xff0c;多用组合少用继承。如何使用组合来替代继承哪些情况适用继承、组合。有哪些设计模式使用到了继承、组合。 …...

一步到位:用Python实现PC屏幕截图并自动发送邮件,实现屏幕监控

在当前的数字化世界中&#xff0c;自动化已经成为我们日常生活和工作中的关键部分。它不仅提高了效率&#xff0c;还节省了大量的时间和精力。在这篇文章中&#xff0c;我们将探讨如何使用Python来实现一个特定的自动化任务 - PC屏幕截图自动发送到指定的邮箱。 这个任务可能看…...

Spring Boot+RocketMQ 实现多实例分布式环境下的事件驱动

为什么要使用MQ&#xff1f; 在Spring Boot Event这篇文章中已经通过Guava或者SpringBoot自身的Listener实现了事件驱动&#xff0c;已经做到了对业务的解耦。为什么还要用到MQ来进行业务解耦呢&#xff1f; 首先无论是通过Guava还是Spring Boot自身提供的监听注解来实现的事…...

oracle ORA-01704: string literal too long ORACLE数据库clob类型

当oracle数据表中有clob类型字段时候&#xff0c;insert或update的sql语句中&#xff0c;超过长度就会报错 ORA-01704: string literal too long update xxx set xxx <div><h1>123</h1></div> where id 100;可以修改为 DECLAREstr varchar2(10000…...

微星主板强刷BIOS(以微星X370gaming plus 为例)

(前两天手欠&#xff0c;用U盘通过微星的M-flash升级BIOS 升级过程中老没动静就强制关机了 然后电脑就打不开了) 几种强刷主板BIOS的方式 在网上看到有三种强刷BIOS的方式分别是: 使用夹子编程器 (听说不太好夹)使用微星转接线编程器&#xff08;只能用于微星主板&#xff0…...

matlab 图像上生成指定中心,指定大小的矩形窗

用matlab实现在图像上生成指定中心,指定大小的矩形窗(奇数*奇数) function PlaneWin PlaneWindow(CentreCoorX,CentreCoorY,RadiusX,RadiusY,SizeImRow,SizeImColumn) % 在图像上生成指定中心,指定大小的矩形窗(奇数*奇数) % % Input: % CentreCoorX(1*1) % CentreCoorY(1*1)…...

❀My学习小记录之算法❀

目录 算法:) 一、定义 二、特征 三、基本要素 常用设计模式 常用实现方法 四、形式化算法 五、复杂度 时间复杂度 空间复杂度 六、非确定性多项式时间&#xff08;NP&#xff09; 七、实现 八、示例 求最大值算法 求最大公约数算法 九、分类 算法:) 一、定义 …...

Hive-high Avaliabl

hive—high Avaliable ​ hive的搭建方式有三种&#xff0c;分别是 ​ 1、Local/Embedded Metastore Database (Derby) ​ 2、Remote Metastore Database ​ 3、Remote Metastore Server ​ 一般情况下&#xff0c;我们在学习的时候直接使用hive –service metastore的方式…...

码住!8个小众宝藏的开发者学习类网站

1、simplilearn simplilearn是全球排名第一的在线学习网站&#xff0c;它的课程由世界知名大学、顶级企业和领先的行业机构通过实时在线课程设计和提供&#xff0c;其中包括顶级行业从业者、广受欢迎的培训师和全球领导者。 2、VisuAlgo VisuAlgo是一个免费的在线学习算法和数…...

Postman常见问题及解决方法

1、网络连接问题 如果Postman无法发送请求或接收响应&#xff0c;可以尝试以下操作&#xff1a; 检查网络连接是否正常&#xff0c;包括检查网络设置、代理设置等。 确认请求的URL是否正确&#xff0c;并检查是否使用了正确的HTTP方法&#xff08;例如GET、POST、PUT等&#…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目&#xff1a;3442. 奇偶频次间的最大差值 I 思路 &#xff1a;哈希&#xff0c;时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况&#xff0c;哈希表这里用数组即可实现。 C版本&#xff1a; class Solution { public:int maxDifference(string s) {int a[26]…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具&#xff0c;该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具&#xff0c;其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利&#xff0c;如安装和调试…...

Java 8 Stream API 入门到实践详解

一、告别 for 循环&#xff01; 传统痛点&#xff1a; Java 8 之前&#xff0c;集合操作离不开冗长的 for 循环和匿名类。例如&#xff0c;过滤列表中的偶数&#xff1a; List<Integer> list Arrays.asList(1, 2, 3, 4, 5); List<Integer> evens new ArrayList…...

Docker 运行 Kafka 带 SASL 认证教程

Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明&#xff1a;server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

【AI学习】三、AI算法中的向量

在人工智能&#xff08;AI&#xff09;算法中&#xff0c;向量&#xff08;Vector&#xff09;是一种将现实世界中的数据&#xff08;如图像、文本、音频等&#xff09;转化为计算机可处理的数值型特征表示的工具。它是连接人类认知&#xff08;如语义、视觉特征&#xff09;与…...

力扣-35.搜索插入位置

题目描述 给定一个排序数组和一个目标值&#xff0c;在数组中找到目标值&#xff0c;并返回其索引。如果目标值不存在于数组中&#xff0c;返回它将会被按顺序插入的位置。 请必须使用时间复杂度为 O(log n) 的算法。 class Solution {public int searchInsert(int[] nums, …...

安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)

船舶制造装配管理现状&#xff1a;装配工作依赖人工经验&#xff0c;装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书&#xff0c;但在实际执行中&#xff0c;工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...

解读《网络安全法》最新修订,把握网络安全新趋势

《网络安全法》自2017年施行以来&#xff0c;在维护网络空间安全方面发挥了重要作用。但随着网络环境的日益复杂&#xff0c;网络攻击、数据泄露等事件频发&#xff0c;现行法律已难以完全适应新的风险挑战。 2025年3月28日&#xff0c;国家网信办会同相关部门起草了《网络安全…...

MinIO Docker 部署:仅开放一个端口

MinIO Docker 部署:仅开放一个端口 在实际的服务器部署中,出于安全和管理的考虑,我们可能只能开放一个端口。MinIO 是一个高性能的对象存储服务,支持 Docker 部署,但默认情况下它需要两个端口:一个是 API 端口(用于存储和访问数据),另一个是控制台端口(用于管理界面…...

【从零开始学习JVM | 第四篇】类加载器和双亲委派机制(高频面试题)

前言&#xff1a; 双亲委派机制对于面试这块来说非常重要&#xff0c;在实际开发中也是经常遇见需要打破双亲委派的需求&#xff0c;今天我们一起来探索一下什么是双亲委派机制&#xff0c;在此之前我们先介绍一下类的加载器。 目录 ​编辑 前言&#xff1a; 类加载器 1. …...