当前位置: 首页 > news >正文

2023.12.28每日一题

LeetCode每日一题

2735.收集巧克力

2735. 收集巧克力 - 力扣(LeetCode)

介绍

看题目看不懂,在评论区看到一个大哥解释,瞬间明白了。

一张桌子上有n件商品围成一圈,每件都有一个价签,它们构成数组nums。除了按照价签上的价格买东西之外,你还可以花x块钱把桌子转一下,把每件商品都对应到下一个价签,问把每种商品买一遍最少花多少钱

给你一个长度为 n 、下标从 0 开始的整数数组 nums ,表示收集不同巧克力的成本。每个巧克力都对应一个不同的类型,最初,位于下标 i 的巧克力就对应第 i 个类型。

在一步操作中,你可以用成本 x 执行下述行为:

  • 同时修改所有巧克力的类型,将巧克力的类型 ith 修改为类型 ((i + 1) mod n)th

假设你可以执行任意次操作,请返回收集所有类型巧克力所需的最小成本。

示例 1:

输入:nums = [20,1,15], x = 5
输出:13
解释:最开始,巧克力的类型分别是 [0,1,2] 。我们可以用成本 1 购买第 1 个类型的巧克力。
接着,我们用成本 5 执行一次操作,巧克力的类型变更为 [1,2,0] 。我们可以用成本 1 购买第 2 个类型的巧克力。
然后,我们用成本 5 执行一次操作,巧克力的类型变更为 [2,0,1] 。我们可以用成本 1 购买第 0 个类型的巧克力。
因此,收集所有类型的巧克力需要的总成本是 (1 + 5 + 1 + 5 + 1) = 13 。可以证明这是一种最优方案。

示例 2:

输入:nums = [1,2,3], x = 4
输出:6
解释:我们将会按最初的成本收集全部三个类型的巧克力,而不需执行任何操作。因此,收集所有类型的巧克力需要的总成本是 1 + 2 + 3 = 6 。

提示:

  • 1 <= nums.length <= 1000
  • 1 <= nums[i] <= 109
  • 1 <= x <= 109

思路

LeetCode看的思路,自己没啥思路,还是说自己算法太垃圾,还需多练

nums数组表示购买对应索引类型的巧克力所需要的代价,可以通过每次以代价x来改变(平移)nums数组的分布。

由于nums数组的长度为n,那么进行n次平移操作之后,进入循环。因此有意义的平移操作最多为n-1次。

那么可以使用一个数组costNums来记录每个类型的巧克力,在{0,1,2, …, n-1}次操作过程中购买所需的最小值。在k次操作完成后,将costNums累加并加上k*x,得到操作k次完成购买所需的总代价。

最后,在{0,1,2,…,n-1}次操作中,选择具有最小代价的那次操作。

代码

C++
class Solution {
public:long long minCost(vector<int>& nums, int x) {int n = nums.size();vector<int> costNums(nums);  // 初始操作 0 次的成本long long totalCost = accumulate(costNums.begin(), costNums.end(), 0LL); // 初始总成本// enumerate 0 to n-1 times operationfor (int k=1; k<n; k++){// 根据当前操作更新 costNums 数组for (int i=0; i<n; i++) {costNums[i] = min(costNums[i], nums[(i+k)%n]);}// 计算当前操作的总成本并与之前的总成本进行比较,保留最小的totalCost = min(totalCost, accumulate(costNums.begin(), costNums.end(), 0LL) + static_cast<long long>(k)*x);}return totalCost;}
};
Java
class Solution {public long minCost(int[] nums, int x) {int n = nums.length;int[] costNums = Arrays.copyOf(nums, n); // 初始操作 0 次的成本long totalCost = Arrays.stream(costNums).asLongStream().sum(); // 初始总成本for (int k = 1; k < n; k++) {// 根据当前操作更新 costNums 数组for (int i = 0; i < n; i++) {costNums[i] = Math.min(costNums[i], nums[(i + k) % n]);}// 计算当前操作的总成本long currentCost = Arrays.stream(costNums).asLongStream().sum() + (long) k * x;// 如果当前成本更小,更新总成本totalCost = Math.min(totalCost, currentCost);}return totalCost;}
}

相关文章:

2023.12.28每日一题

LeetCode每日一题 2735.收集巧克力 2735. 收集巧克力 - 力扣&#xff08;LeetCode&#xff09; 介绍 看题目看不懂&#xff0c;在评论区看到一个大哥解释&#xff0c;瞬间明白了。 一张桌子上有n件商品围成一圈&#xff0c;每件都有一个价签&#xff0c;它们构成数组nums。…...

231227-9步在RHEL8.8配置本地yum源仓库

Seciton 1&#xff1a;参考视频 RHEL8配置本地yum源仓库-安徽迪浮_哔哩哔哩_bilibili Seciton 2&#xff1a;具体操作 &#x1f3af; 第1步&#xff1a;查看光驱文件/dev/sr0是否已经挂载&#xff1f;此处已挂在 [lgklocalhost ~]$ df -h &#x1f3af; 第1步&#xff1a;查看…...

5. 创建型模式 - 单例模式

亦称&#xff1a; 单件模式、Singleton 意图 单例模式是一种创建型设计模式&#xff0c; 让你能够保证一个类只有一个实例&#xff0c; 并提供一个访问该实例的全局节点。 问题 单例模式同时解决了两个问题&#xff0c; 所以违反了单一职责原则&#xff1a; 保证一个类只有一…...

机器学习之人工神经网络(Artificial Neural Networks,ANN)

人工神经网络(Artificial Neural Networks,ANN)是机器学习中的一种模型,灵感来源于人脑的神经网络结构。它由神经元(或称为节点)构成的层级结构组成,每个神经元接收输入并生成输出,这些输入和输出通过权重进行连接。 人工神经网络(ANN)是一种模仿生物神经系统构建的…...

GetLastError()详细介绍

GetLastError() 是 Windows 操作系统提供的一个函数&#xff0c;用于获取调用线程最近一次发生的错误码。这个函数的定义如下&#xff1a; DWORD GetLastError(void); 调用 GetLastError() 函数可以帮助开发人员在发生错误时获取错误的详细信息&#xff0c;从而进行适当的错…...

【unity3D-粒子系统】粒子系统主模块-Particle System篇

&#x1f497; 未来的游戏开发程序媛&#xff0c;现在的努力学习菜鸡 &#x1f4a6;本专栏是我关于游戏开发的学习笔记 &#x1f236;本篇是unity的粒子系统主模块-Particle System 基础知识 Particle System 介绍&#xff1a;粒子系统的主模块&#xff0c;是必需的模块&#x…...

Windows搭建FTP服务器教学以及计算机端口介绍

目录 一. FTP服务器介绍 FTP服务器是什么意思&#xff1f; 二.Windows Service 2012 搭建FTP服务器 1.开启防火墙 2.创建组 ​编辑3.创建用户 4.用户绑定组 5.安装ftp服务器 ​编辑6.配置ftp服务器 7.配置ftp文件夹的权限 8.连接测试 三.计算机端口介绍 什么是网络…...

安防视频监控系统EasyCVR实现H.265视频在3秒内起播的注意事项

可视化云监控平台/安防视频监控系统EasyCVR视频综合管理平台&#xff0c;采用了开放式的网络结构&#xff0c;可以提供实时远程视频监控、视频录像、录像回放与存储、告警、语音对讲、云台控制、平台级联、磁盘阵列存储、视频集中存储、云存储等丰富的视频能力&#xff0c;同时…...

CNN实现对手写字体的迭代

导入库 import torchvision import torch from torchvision.transforms import ToTensor from torch import nn import matplotlib.pyplot as plt 导入手写字体数据 train_dstorchvision.datasets.MNIST(data/,trainTrue,transformToTensor(),downloadTrue) test_dstorchvis…...

docker学习笔记01-安装docker

1.Docker的概述 用Go语言实现的开源应用项目&#xff08;container&#xff09;&#xff1b;克服操作系统的笨重&#xff1b;快速部署&#xff1b;只隔离应用程序的运行时环境但容器之间可以共享同一个操作系统&#xff1b;Docker通过隔离机制&#xff0c;每个容器间是互相隔离…...

【《设计模式之美》】如何取舍继承与组合

文章目录 什么情况下不推荐使用继承&#xff1f;组合相比继承有哪些优势&#xff1f;使用组合、继承的时机 本文主要想了解&#xff1a; 为什么组合优于继承&#xff0c;多用组合少用继承。如何使用组合来替代继承哪些情况适用继承、组合。有哪些设计模式使用到了继承、组合。 …...

一步到位:用Python实现PC屏幕截图并自动发送邮件,实现屏幕监控

在当前的数字化世界中&#xff0c;自动化已经成为我们日常生活和工作中的关键部分。它不仅提高了效率&#xff0c;还节省了大量的时间和精力。在这篇文章中&#xff0c;我们将探讨如何使用Python来实现一个特定的自动化任务 - PC屏幕截图自动发送到指定的邮箱。 这个任务可能看…...

Spring Boot+RocketMQ 实现多实例分布式环境下的事件驱动

为什么要使用MQ&#xff1f; 在Spring Boot Event这篇文章中已经通过Guava或者SpringBoot自身的Listener实现了事件驱动&#xff0c;已经做到了对业务的解耦。为什么还要用到MQ来进行业务解耦呢&#xff1f; 首先无论是通过Guava还是Spring Boot自身提供的监听注解来实现的事…...

oracle ORA-01704: string literal too long ORACLE数据库clob类型

当oracle数据表中有clob类型字段时候&#xff0c;insert或update的sql语句中&#xff0c;超过长度就会报错 ORA-01704: string literal too long update xxx set xxx <div><h1>123</h1></div> where id 100;可以修改为 DECLAREstr varchar2(10000…...

微星主板强刷BIOS(以微星X370gaming plus 为例)

(前两天手欠&#xff0c;用U盘通过微星的M-flash升级BIOS 升级过程中老没动静就强制关机了 然后电脑就打不开了) 几种强刷主板BIOS的方式 在网上看到有三种强刷BIOS的方式分别是: 使用夹子编程器 (听说不太好夹)使用微星转接线编程器&#xff08;只能用于微星主板&#xff0…...

matlab 图像上生成指定中心,指定大小的矩形窗

用matlab实现在图像上生成指定中心,指定大小的矩形窗(奇数*奇数) function PlaneWin PlaneWindow(CentreCoorX,CentreCoorY,RadiusX,RadiusY,SizeImRow,SizeImColumn) % 在图像上生成指定中心,指定大小的矩形窗(奇数*奇数) % % Input: % CentreCoorX(1*1) % CentreCoorY(1*1)…...

❀My学习小记录之算法❀

目录 算法:) 一、定义 二、特征 三、基本要素 常用设计模式 常用实现方法 四、形式化算法 五、复杂度 时间复杂度 空间复杂度 六、非确定性多项式时间&#xff08;NP&#xff09; 七、实现 八、示例 求最大值算法 求最大公约数算法 九、分类 算法:) 一、定义 …...

Hive-high Avaliabl

hive—high Avaliable ​ hive的搭建方式有三种&#xff0c;分别是 ​ 1、Local/Embedded Metastore Database (Derby) ​ 2、Remote Metastore Database ​ 3、Remote Metastore Server ​ 一般情况下&#xff0c;我们在学习的时候直接使用hive –service metastore的方式…...

码住!8个小众宝藏的开发者学习类网站

1、simplilearn simplilearn是全球排名第一的在线学习网站&#xff0c;它的课程由世界知名大学、顶级企业和领先的行业机构通过实时在线课程设计和提供&#xff0c;其中包括顶级行业从业者、广受欢迎的培训师和全球领导者。 2、VisuAlgo VisuAlgo是一个免费的在线学习算法和数…...

Postman常见问题及解决方法

1、网络连接问题 如果Postman无法发送请求或接收响应&#xff0c;可以尝试以下操作&#xff1a; 检查网络连接是否正常&#xff0c;包括检查网络设置、代理设置等。 确认请求的URL是否正确&#xff0c;并检查是否使用了正确的HTTP方法&#xff08;例如GET、POST、PUT等&#…...

Spark 之 入门讲解详细版(1)

1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室&#xff08;Algorithms, Machines, and People Lab&#xff09;开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目&#xff0c;8个月后成为Apache顶级项目&#xff0c;速度之快足见过人之处&…...

React hook之useRef

React useRef 详解 useRef 是 React 提供的一个 Hook&#xff0c;用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途&#xff0c;下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...

反向工程与模型迁移:打造未来商品详情API的可持续创新体系

在电商行业蓬勃发展的当下&#xff0c;商品详情API作为连接电商平台与开发者、商家及用户的关键纽带&#xff0c;其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息&#xff08;如名称、价格、库存等&#xff09;的获取与展示&#xff0c;已难以满足市场对个性化、智能…...

Java如何权衡是使用无序的数组还是有序的数组

在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

大数据零基础学习day1之环境准备和大数据初步理解

学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 &#xff08;1&#xff09;设置网关 打开VMware虚拟机&#xff0c;点击编辑…...

pam_env.so模块配置解析

在PAM&#xff08;Pluggable Authentication Modules&#xff09;配置中&#xff0c; /etc/pam.d/su 文件相关配置含义如下&#xff1a; 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块&#xff0c;负责验证用户身份&am…...

CentOS下的分布式内存计算Spark环境部署

一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架&#xff0c;相比 MapReduce 具有以下核心优势&#xff1a; 内存计算&#xff1a;数据可常驻内存&#xff0c;迭代计算性能提升 10-100 倍&#xff08;文档段落&#xff1a;3-79…...

多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验

一、多模态商品数据接口的技术架构 &#xff08;一&#xff09;多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如&#xff0c;当用户上传一张“蓝色连衣裙”的图片时&#xff0c;接口可自动提取图像中的颜色&#xff08;RGB值&…...

拉力测试cuda pytorch 把 4070显卡拉满

import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试&#xff0c;通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小&#xff0c;增大可提高计算复杂度duration: 测试持续时间&#xff08;秒&…...

pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)

目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关&#xff0…...