当前位置: 首页 > news >正文

白话机器学习的数学-1-回归

1、设置问题

投入的广告费越多,广告的点击量就越高,进而带来访问数的增加。

2、定义模型

定义一个函数:一次函数
y = ax + b  (a 是斜率、b 是截距)
定义函数:

3、最小二乘法

例子:  用随便确定的参数计算的值与实际的值存在偏差。
假设有 n 个训练数据, 那么它们的误差之和可以用这样的表达式表示。
这个表达式称为 目标函数,E(θ) 的 E 是误差的英语单词 Error 的首字母,∑读作“西格玛”。
这么做是为了找到使 E(θ) 的值最小 的 θ,这样的问题称为最优化问题。
来计算一下表格 E(θ) 的值,设 θ0 = 1、θ1 = 2, 然后将刚才列举的 4 个训练数据代入表达式

4、梯度下降法(最速下降法)

微分是计算变化的快慢程度时使用的方法。
函数 g(x):
微分(求导):
x < 1 为负数,x = 1 为0,x > 1 为正数。
根据导数的符号来决定移动 x 的方向,只要向与导数的符号相反的方向移动 x,g(x) 就会自然而然地沿着最小值的方向前进了, 这也被称为最速下降法或梯度下降法 。
η  是称为学习率的正的常数,读作“伊塔”。根据学习率的大小, 到达最小值的更新次数也会发生变化。换种说法就是收敛速度会 不同。有时候甚至会出现完全无法收敛,一直发散的情况。
比如 η = 1,从 x = 3 开始 (结果是一直发散,无法收敛):
那设 η = 0.1,同样从 x = 3 开始:
回过头来看一下目标函数 E(θ):
这个目标函数是拥有 θ0 和 θ1 的双变量函数,所以不能用 普通的微分,而要用偏微分:
设:
计算微分:
同样:
所以参数 θ0 和 θ1 的更新表达式是:

5、多项式回归

上面是一次函数,用更大次数的表达式, 这样就能表示更复杂的曲线。
不过对于要解决的问题,在找出最合适的表达式之前,需要 不断地去尝试。
虽然次数越大拟合得越好,但难免也会出现过拟合的问题。
如二次函数:
曲线如下:
曲线看起来更拟合数据。
计算微分:
像这样增加函数中多项式的次数,然后再使用函数的分析方法被称为多项式回归。

6、多重回归

多项式回归问题中确实会涉及不同次数的项,但是使用的变量依然只有广告费一项。
我们稍微扩展一下之前设置的问题。之前只是根据广告费来预 测点击量,现在呢,决定点击量的除了广告费之外,还有广告的 展示位置和广告版面的大小等多个要素。
为了让问题尽可能地简单,这次我们只考虑广告版面的大小,设 广告费为 x1、广告栏的宽为 x2、广告栏的高为 x3,那么 fθ 可以 表示如下:
下面我们把它推广到有 n 个变量的情况:
使用向量表示:
求微分:
u 对 v 微分的部分是一样的,所以只需要求 v 对 θj 的微分就好了
那么第 j 个参数的更新表达式就是这样的:
像这样包含了多个变量的回归称为多重回归。

7、随机梯度下降法

梯度下降法是对所有的训练数据都重复进行计算,缺点是计算量大、计算时间长,且容易陷入局部最优解 。
在随机梯度下降 法中会随机选择一个训练数据,并使用它来更新参数。这个表达 式中的 k 就是被随机选中的数据索引:
梯度下降法更新 1 次参数的时间,随机梯度下降法可以更新 n 次。 此外,随机梯度下降法由于训练数据是随机选择的,更新参数时使用的又是选择数据时的梯度,所以不容易陷入目标函数的局部最优解。
我们前面提到了随机选择 1 个训练数据的做法,此外还有随机选 择 m 个训练数据来更新参数的做法。
设随机选择 m 个训练数据的索引的集合为 K,那么我们这样 来更新参数:
这种做法被称为小批量(mini-batch)梯度下降法。
不管是随机梯度下降法还是小批量梯度下降法,我们都必须考虑 学习率 η。
把 η 设置为合适的值是很重要的, 可以通过反复尝试来找到合适的值。

相关文章:

白话机器学习的数学-1-回归

1、设置问题 投入的广告费越多&#xff0c;广告的点击量就越高&#xff0c;进而带来访问数的增加。 2、定义模型 定义一个函数&#xff1a;一次函数 y ax b &#xff08;a 是斜率、b 是截距&#xff09; 定义函数&#xff1a; 3、最小二乘法 例子&#xff1a; 用随便确定的参…...

ubuntu22下安装minconda

bing 搜索 canda install 找到官方网站 https://docs.conda.io/projects/miniconda/en/latest/ 这里我们安装minconda。 官网有安装方法。 mkdir -p ~/miniconda3 wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda3/miniconda.sh…...

如何借助边缘网关打造智慧配电房安全方案

配电房是电力系统的重要组成部分&#xff0c;通常设置有各种高压配电装置和箱柜&#xff0c;是企业安全管理的重点。传统的人工巡检和监控总是难以避免疏漏&#xff0c;导致风险隐患的产生和扩大。 随着物联网、边缘计算、设备联动控制等技术的普及应用&#xff0c;佰马针对配电…...

k8s的二进制部署

k8s的二进制部署 k8s的二进制部署的实验&#xff1a; 源码包部署 k8s的master01&#xff1a;192.168.233.91 组件&#xff1a;kube-apiserver kube-controller-manager kube-scheduler etcd k8s的master02&#xff1a;192.168.233.92 组件&#xff1a;kube-api…...

Python基础语法总结

1.每条语句结束不需要分号(也可以加上), 直接换行, 注意: 如果两行代码写一行, 则必须加分号. 2.定义变量不需要指定类型(如果需要写类型, 需要在变量名后面加": 类型, 这个写法只是方便读代码). 3.变量名大小写敏感. 4.查看变量类型: type(变量名). 5.Python中的int表…...

矩阵理论基本知识

1、矩阵范数、算子范数 矩阵无穷范数是非自相容范数&#xff0c;矩阵1-范数、矩阵2-范数是自相容范数矩阵2-范数&#xff1a;Frobenius范数&#xff0c;是向量2-范数的自然推广。 ∥ A ∥ m 2 ∥ A ∥ F ∑ a i j ∗ a i j \|A\|_{m2}\|A\|_{F}\sqrt{\sum a_{ij}^*a_{ij}} ∥…...

《深入理解Java虚拟机(第三版)》读书笔记:Java内存区域与内存溢出异常、垃圾收集器与内存分配策略

下文是阅读《深入理解Java虚拟机&#xff08;第3版&#xff09;》这本书的读书笔记&#xff0c;如有侵权&#xff0c;请联系删除。 文章目录 第2章 Java内存区域与内存溢出异常2.2 运行时数据区域2.3 HotSpot虚拟机对象探秘 第3章 垃圾收集器与内存分配策略3.2 对象已死&…...

android 手机主界面侧滑退出app问题

最近重新搭了个app&#xff0c;发现手机显示APP主界面时&#xff0c;沿着手机右边向左滑&#xff0c;会直接关闭应用&#xff0c;所以想搞个第一次提示&#xff0c;第二次退出app的效果。 结果搞出个复杂的东西&#xff0c;下面是两段代码。1: 1:GestureDetector扩展函数。其…...

spring boot 配置全局日期和时间格式

spring boot 为项目配置 全局日期和时间格式化yyyy-MM-dd HH:mm:ss 方式一&#xff1a;代码配置全局日期和时间格式化 /*** author hua*/ Configuration public class WebConfiguration implements WebMvcConfigurer {/*** 项目全局时间格式化*/ Bean public ObjectMapper get…...

GoLang学习之路,对Elasticsearch的使用,一文足以(包括泛型使用思想)(二)

书写上回&#xff0c;上回讲到&#xff0c;Elasticsearch的使用前提即&#xff1a;语法&#xff0c;表结构&#xff0c;使用类型结构等。要学这个必须要看前面这个&#xff1a;GoLang学习之路&#xff0c;对Elasticsearch的使用&#xff0c;一文足以&#xff08;包括泛型使用思…...

鸿蒙APP的代码规范

鸿蒙APP的代码规范是为了确保代码质量、可读性和可维护性而定义的一系列规则和标准。以下是一些建议的鸿蒙APP代码规范&#xff0c;希望对大家有所帮助。北京木奇移动技术有限公司&#xff0c;专业的软件外包开发公司&#xff0c;欢迎交流合作。 1. 代码风格&#xff1a; 采用…...

蓝桥杯-每日刷题-027

出租汽车计费器 一、题目要求 题目描述 有一个城市出租汽车的计费规则是3公里内&#xff08;含3公里&#xff09;基本费6元&#xff0c;超过3公里&#xff0c;每一公里1.4元。 现在对于输入具体的公里数x&#xff08;0<x<1000&#xff09;&#xff0c;编程计算x公里所需…...

安装Node修改Node镜像地址搭建Vue脚手架创建Vue项目

1、安装VSCode和Node 下载VSCode Visual Studio Code - Code Editing. Redefined 下载Node Node.js (nodejs.org) 检验是否安装成功&#xff0c;WinR,输入cmd命令&#xff0c;使用node -v可以查看到其版本号 2、修改镜像地址 安装好node之后&#xff0c;开始修改镜像地址 …...

git 学习 之一个规范的 commit 如何写

最好的话做一件完整的事情就提交一次...

2023 年人工智能研究与技术排名前 10 的国家

人工智能研究是一项全球性的工作。虽然美国和中国因其对人工智能的贡献而备受关注&#xff0c;但事实是&#xff0c;世界各国都在涉足这项技术&#xff0c;尝试新的突破&#xff0c;并吸引投资者的关注。 斯坦福大学的《2023年人工智能报告》估计&#xff0c;到 2022 年&#…...

留言板(Mybatis连接数据库版)

目录 1.添加Mybatis和SQL的依赖 2.建立数据库和需要的表 3.对应表中的字段&#xff0c;补充Java对象 4.对代码进行逻辑分层 5.后端逻辑代码 之前的项目实例【基于Spring MVC的前后端交互案例及应用分层的实现】https://blog.csdn.net/weixin_67793092/article/details/134…...

第十二章 Sleuth分布式请求链路跟踪

Sleuth分布式请求链路跟踪 gitee:springcloud_study: springcloud&#xff1a;服务集群、注册中心、配置中心&#xff08;热更新&#xff09;、服务网关&#xff08;校验、路由、负载均衡&#xff09;、分布式缓存、分布式搜索、消息队列&#xff08;异步通信&#xff09;、数…...

EasyExcel多线程批量导出数据,动态表头,静态资源访问

1.导入依赖 <dependency><groupId>com.alibaba</groupId><artifactId>easyexcel</artifactId><version>3.1.1</version></dependency>2.建立实体 Data public class ActResultLogVO implements Serializable {private static…...

树莓派界面改成中文

安装完树莓派系统(Raspberry Pi OS with Desktop)&#xff0c;第一次启动时&#xff0c;时会有如下面二个图所示&#xff0c;让你选择区域时区和语言。 树莓派默认的语言为英文&#xff0c;如果你在安装时没有选择的话&#xff0c;默认的区域为英国&#xff0c;语言为英国英文&…...

软件工程期末复习

● 用例&#xff1a;借书 ●参与者&#xff1a;管理员,借阅者 ●操作流&#xff1a; ① 管理员进入图书借阅界面&#xff0c;用例开始。 ② 系统要求输入借阅者的借书证编码。 ③系统检验借书证编码,如果正确,则显示借阅者的信息。 A1&#xff1a;借书证编码有错。 A2: 如果该借…...

逻辑回归:给不确定性划界的分类大师

想象你是一名医生。面对患者的检查报告&#xff08;肿瘤大小、血液指标&#xff09;&#xff0c;你需要做出一个**决定性判断**&#xff1a;恶性还是良性&#xff1f;这种“非黑即白”的抉择&#xff0c;正是**逻辑回归&#xff08;Logistic Regression&#xff09;** 的战场&a…...

java 实现excel文件转pdf | 无水印 | 无限制

文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...

MMaDA: Multimodal Large Diffusion Language Models

CODE &#xff1a; https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA&#xff0c;它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

React19源码系列之 事件插件系统

事件类别 事件类型 定义 文档 Event Event 接口表示在 EventTarget 上出现的事件。 Event - Web API | MDN UIEvent UIEvent 接口表示简单的用户界面事件。 UIEvent - Web API | MDN KeyboardEvent KeyboardEvent 对象描述了用户与键盘的交互。 KeyboardEvent - Web…...

Java 二维码

Java 二维码 **技术&#xff1a;**谷歌 ZXing 实现 首先添加依赖 <!-- 二维码依赖 --><dependency><groupId>com.google.zxing</groupId><artifactId>core</artifactId><version>3.5.1</version></dependency><de…...

Docker 本地安装 mysql 数据库

Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker &#xff1b;并安装。 基础操作不再赘述。 打开 macOS 终端&#xff0c;开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...

Golang——7、包与接口详解

包与接口详解 1、Golang包详解1.1、Golang中包的定义和介绍1.2、Golang包管理工具go mod1.3、Golang中自定义包1.4、Golang中使用第三包1.5、init函数 2、接口详解2.1、接口的定义2.2、空接口2.3、类型断言2.4、结构体值接收者和指针接收者实现接口的区别2.5、一个结构体实现多…...

Java求职者面试指南:Spring、Spring Boot、Spring MVC与MyBatis技术解析

Java求职者面试指南&#xff1a;Spring、Spring Boot、Spring MVC与MyBatis技术解析 一、第一轮基础概念问题 1. Spring框架的核心容器是什么&#xff1f;它的作用是什么&#xff1f; Spring框架的核心容器是IoC&#xff08;控制反转&#xff09;容器。它的主要作用是管理对…...

API网关Kong的鉴权与限流:高并发场景下的核心实践

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 引言 在微服务架构中&#xff0c;API网关承担着流量调度、安全防护和协议转换的核心职责。作为云原生时代的代表性网关&#xff0c;Kong凭借其插件化架构…...

解析两阶段提交与三阶段提交的核心差异及MySQL实现方案

引言 在分布式系统的事务处理中&#xff0c;如何保障跨节点数据操作的一致性始终是核心挑战。经典的两阶段提交协议&#xff08;2PC&#xff09;通过准备阶段与提交阶段的协调机制&#xff0c;以同步决策模式确保事务原子性。其改进版本三阶段提交协议&#xff08;3PC&#xf…...