当前位置: 首页 > news >正文

白话机器学习的数学-1-回归

1、设置问题

投入的广告费越多,广告的点击量就越高,进而带来访问数的增加。

2、定义模型

定义一个函数:一次函数
y = ax + b  (a 是斜率、b 是截距)
定义函数:

3、最小二乘法

例子:  用随便确定的参数计算的值与实际的值存在偏差。
假设有 n 个训练数据, 那么它们的误差之和可以用这样的表达式表示。
这个表达式称为 目标函数,E(θ) 的 E 是误差的英语单词 Error 的首字母,∑读作“西格玛”。
这么做是为了找到使 E(θ) 的值最小 的 θ,这样的问题称为最优化问题。
来计算一下表格 E(θ) 的值,设 θ0 = 1、θ1 = 2, 然后将刚才列举的 4 个训练数据代入表达式

4、梯度下降法(最速下降法)

微分是计算变化的快慢程度时使用的方法。
函数 g(x):
微分(求导):
x < 1 为负数,x = 1 为0,x > 1 为正数。
根据导数的符号来决定移动 x 的方向,只要向与导数的符号相反的方向移动 x,g(x) 就会自然而然地沿着最小值的方向前进了, 这也被称为最速下降法或梯度下降法 。
η  是称为学习率的正的常数,读作“伊塔”。根据学习率的大小, 到达最小值的更新次数也会发生变化。换种说法就是收敛速度会 不同。有时候甚至会出现完全无法收敛,一直发散的情况。
比如 η = 1,从 x = 3 开始 (结果是一直发散,无法收敛):
那设 η = 0.1,同样从 x = 3 开始:
回过头来看一下目标函数 E(θ):
这个目标函数是拥有 θ0 和 θ1 的双变量函数,所以不能用 普通的微分,而要用偏微分:
设:
计算微分:
同样:
所以参数 θ0 和 θ1 的更新表达式是:

5、多项式回归

上面是一次函数,用更大次数的表达式, 这样就能表示更复杂的曲线。
不过对于要解决的问题,在找出最合适的表达式之前,需要 不断地去尝试。
虽然次数越大拟合得越好,但难免也会出现过拟合的问题。
如二次函数:
曲线如下:
曲线看起来更拟合数据。
计算微分:
像这样增加函数中多项式的次数,然后再使用函数的分析方法被称为多项式回归。

6、多重回归

多项式回归问题中确实会涉及不同次数的项,但是使用的变量依然只有广告费一项。
我们稍微扩展一下之前设置的问题。之前只是根据广告费来预 测点击量,现在呢,决定点击量的除了广告费之外,还有广告的 展示位置和广告版面的大小等多个要素。
为了让问题尽可能地简单,这次我们只考虑广告版面的大小,设 广告费为 x1、广告栏的宽为 x2、广告栏的高为 x3,那么 fθ 可以 表示如下:
下面我们把它推广到有 n 个变量的情况:
使用向量表示:
求微分:
u 对 v 微分的部分是一样的,所以只需要求 v 对 θj 的微分就好了
那么第 j 个参数的更新表达式就是这样的:
像这样包含了多个变量的回归称为多重回归。

7、随机梯度下降法

梯度下降法是对所有的训练数据都重复进行计算,缺点是计算量大、计算时间长,且容易陷入局部最优解 。
在随机梯度下降 法中会随机选择一个训练数据,并使用它来更新参数。这个表达 式中的 k 就是被随机选中的数据索引:
梯度下降法更新 1 次参数的时间,随机梯度下降法可以更新 n 次。 此外,随机梯度下降法由于训练数据是随机选择的,更新参数时使用的又是选择数据时的梯度,所以不容易陷入目标函数的局部最优解。
我们前面提到了随机选择 1 个训练数据的做法,此外还有随机选 择 m 个训练数据来更新参数的做法。
设随机选择 m 个训练数据的索引的集合为 K,那么我们这样 来更新参数:
这种做法被称为小批量(mini-batch)梯度下降法。
不管是随机梯度下降法还是小批量梯度下降法,我们都必须考虑 学习率 η。
把 η 设置为合适的值是很重要的, 可以通过反复尝试来找到合适的值。

相关文章:

白话机器学习的数学-1-回归

1、设置问题 投入的广告费越多&#xff0c;广告的点击量就越高&#xff0c;进而带来访问数的增加。 2、定义模型 定义一个函数&#xff1a;一次函数 y ax b &#xff08;a 是斜率、b 是截距&#xff09; 定义函数&#xff1a; 3、最小二乘法 例子&#xff1a; 用随便确定的参…...

ubuntu22下安装minconda

bing 搜索 canda install 找到官方网站 https://docs.conda.io/projects/miniconda/en/latest/ 这里我们安装minconda。 官网有安装方法。 mkdir -p ~/miniconda3 wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda3/miniconda.sh…...

如何借助边缘网关打造智慧配电房安全方案

配电房是电力系统的重要组成部分&#xff0c;通常设置有各种高压配电装置和箱柜&#xff0c;是企业安全管理的重点。传统的人工巡检和监控总是难以避免疏漏&#xff0c;导致风险隐患的产生和扩大。 随着物联网、边缘计算、设备联动控制等技术的普及应用&#xff0c;佰马针对配电…...

k8s的二进制部署

k8s的二进制部署 k8s的二进制部署的实验&#xff1a; 源码包部署 k8s的master01&#xff1a;192.168.233.91 组件&#xff1a;kube-apiserver kube-controller-manager kube-scheduler etcd k8s的master02&#xff1a;192.168.233.92 组件&#xff1a;kube-api…...

Python基础语法总结

1.每条语句结束不需要分号(也可以加上), 直接换行, 注意: 如果两行代码写一行, 则必须加分号. 2.定义变量不需要指定类型(如果需要写类型, 需要在变量名后面加": 类型, 这个写法只是方便读代码). 3.变量名大小写敏感. 4.查看变量类型: type(变量名). 5.Python中的int表…...

矩阵理论基本知识

1、矩阵范数、算子范数 矩阵无穷范数是非自相容范数&#xff0c;矩阵1-范数、矩阵2-范数是自相容范数矩阵2-范数&#xff1a;Frobenius范数&#xff0c;是向量2-范数的自然推广。 ∥ A ∥ m 2 ∥ A ∥ F ∑ a i j ∗ a i j \|A\|_{m2}\|A\|_{F}\sqrt{\sum a_{ij}^*a_{ij}} ∥…...

《深入理解Java虚拟机(第三版)》读书笔记:Java内存区域与内存溢出异常、垃圾收集器与内存分配策略

下文是阅读《深入理解Java虚拟机&#xff08;第3版&#xff09;》这本书的读书笔记&#xff0c;如有侵权&#xff0c;请联系删除。 文章目录 第2章 Java内存区域与内存溢出异常2.2 运行时数据区域2.3 HotSpot虚拟机对象探秘 第3章 垃圾收集器与内存分配策略3.2 对象已死&…...

android 手机主界面侧滑退出app问题

最近重新搭了个app&#xff0c;发现手机显示APP主界面时&#xff0c;沿着手机右边向左滑&#xff0c;会直接关闭应用&#xff0c;所以想搞个第一次提示&#xff0c;第二次退出app的效果。 结果搞出个复杂的东西&#xff0c;下面是两段代码。1: 1:GestureDetector扩展函数。其…...

spring boot 配置全局日期和时间格式

spring boot 为项目配置 全局日期和时间格式化yyyy-MM-dd HH:mm:ss 方式一&#xff1a;代码配置全局日期和时间格式化 /*** author hua*/ Configuration public class WebConfiguration implements WebMvcConfigurer {/*** 项目全局时间格式化*/ Bean public ObjectMapper get…...

GoLang学习之路,对Elasticsearch的使用,一文足以(包括泛型使用思想)(二)

书写上回&#xff0c;上回讲到&#xff0c;Elasticsearch的使用前提即&#xff1a;语法&#xff0c;表结构&#xff0c;使用类型结构等。要学这个必须要看前面这个&#xff1a;GoLang学习之路&#xff0c;对Elasticsearch的使用&#xff0c;一文足以&#xff08;包括泛型使用思…...

鸿蒙APP的代码规范

鸿蒙APP的代码规范是为了确保代码质量、可读性和可维护性而定义的一系列规则和标准。以下是一些建议的鸿蒙APP代码规范&#xff0c;希望对大家有所帮助。北京木奇移动技术有限公司&#xff0c;专业的软件外包开发公司&#xff0c;欢迎交流合作。 1. 代码风格&#xff1a; 采用…...

蓝桥杯-每日刷题-027

出租汽车计费器 一、题目要求 题目描述 有一个城市出租汽车的计费规则是3公里内&#xff08;含3公里&#xff09;基本费6元&#xff0c;超过3公里&#xff0c;每一公里1.4元。 现在对于输入具体的公里数x&#xff08;0<x<1000&#xff09;&#xff0c;编程计算x公里所需…...

安装Node修改Node镜像地址搭建Vue脚手架创建Vue项目

1、安装VSCode和Node 下载VSCode Visual Studio Code - Code Editing. Redefined 下载Node Node.js (nodejs.org) 检验是否安装成功&#xff0c;WinR,输入cmd命令&#xff0c;使用node -v可以查看到其版本号 2、修改镜像地址 安装好node之后&#xff0c;开始修改镜像地址 …...

git 学习 之一个规范的 commit 如何写

最好的话做一件完整的事情就提交一次...

2023 年人工智能研究与技术排名前 10 的国家

人工智能研究是一项全球性的工作。虽然美国和中国因其对人工智能的贡献而备受关注&#xff0c;但事实是&#xff0c;世界各国都在涉足这项技术&#xff0c;尝试新的突破&#xff0c;并吸引投资者的关注。 斯坦福大学的《2023年人工智能报告》估计&#xff0c;到 2022 年&#…...

留言板(Mybatis连接数据库版)

目录 1.添加Mybatis和SQL的依赖 2.建立数据库和需要的表 3.对应表中的字段&#xff0c;补充Java对象 4.对代码进行逻辑分层 5.后端逻辑代码 之前的项目实例【基于Spring MVC的前后端交互案例及应用分层的实现】https://blog.csdn.net/weixin_67793092/article/details/134…...

第十二章 Sleuth分布式请求链路跟踪

Sleuth分布式请求链路跟踪 gitee:springcloud_study: springcloud&#xff1a;服务集群、注册中心、配置中心&#xff08;热更新&#xff09;、服务网关&#xff08;校验、路由、负载均衡&#xff09;、分布式缓存、分布式搜索、消息队列&#xff08;异步通信&#xff09;、数…...

EasyExcel多线程批量导出数据,动态表头,静态资源访问

1.导入依赖 <dependency><groupId>com.alibaba</groupId><artifactId>easyexcel</artifactId><version>3.1.1</version></dependency>2.建立实体 Data public class ActResultLogVO implements Serializable {private static…...

树莓派界面改成中文

安装完树莓派系统(Raspberry Pi OS with Desktop)&#xff0c;第一次启动时&#xff0c;时会有如下面二个图所示&#xff0c;让你选择区域时区和语言。 树莓派默认的语言为英文&#xff0c;如果你在安装时没有选择的话&#xff0c;默认的区域为英国&#xff0c;语言为英国英文&…...

软件工程期末复习

● 用例&#xff1a;借书 ●参与者&#xff1a;管理员,借阅者 ●操作流&#xff1a; ① 管理员进入图书借阅界面&#xff0c;用例开始。 ② 系统要求输入借阅者的借书证编码。 ③系统检验借书证编码,如果正确,则显示借阅者的信息。 A1&#xff1a;借书证编码有错。 A2: 如果该借…...

Chapter03-Authentication vulnerabilities

文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...

云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地

借阿里云中企出海大会的东风&#xff0c;以**「云启出海&#xff0c;智联未来&#xff5c;打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办&#xff0c;现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...

【网络安全产品大调研系列】2. 体验漏洞扫描

前言 2023 年漏洞扫描服务市场规模预计为 3.06&#xff08;十亿美元&#xff09;。漏洞扫描服务市场行业预计将从 2024 年的 3.48&#xff08;十亿美元&#xff09;增长到 2032 年的 9.54&#xff08;十亿美元&#xff09;。预测期内漏洞扫描服务市场 CAGR&#xff08;增长率&…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat&#xff08;I/O Statistics&#xff09;是Linux系统下用于监视系统输入输出设备和CPU使…...

Python爬虫(二):爬虫完整流程

爬虫完整流程详解&#xff08;7大核心步骤实战技巧&#xff09; 一、爬虫完整工作流程 以下是爬虫开发的完整流程&#xff0c;我将结合具体技术点和实战经验展开说明&#xff1a; 1. 目标分析与前期准备 网站技术分析&#xff1a; 使用浏览器开发者工具&#xff08;F12&…...

全面解析各类VPN技术:GRE、IPsec、L2TP、SSL与MPLS VPN对比

目录 引言 VPN技术概述 GRE VPN 3.1 GRE封装结构 3.2 GRE的应用场景 GRE over IPsec 4.1 GRE over IPsec封装结构 4.2 为什么使用GRE over IPsec&#xff1f; IPsec VPN 5.1 IPsec传输模式&#xff08;Transport Mode&#xff09; 5.2 IPsec隧道模式&#xff08;Tunne…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”

2025年#高考 将在近日拉开帷幕&#xff0c;#AI 监考一度冲上热搜。当AI深度融入高考&#xff0c;#时间同步 不再是辅助功能&#xff0c;而是决定AI监考系统成败的“生命线”。 AI亮相2025高考&#xff0c;40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕&#xff0c;江西、…...

基于Java+MySQL实现(GUI)客户管理系统

客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息&#xff0c;对客户进行统一管理&#xff0c;可以把所有客户信息录入系统&#xff0c;进行维护和统计功能。可通过文件的方式保存相关录入数据&#xff0c;对…...

【Elasticsearch】Elasticsearch 在大数据生态圈的地位 实践经验

Elasticsearch 在大数据生态圈的地位 & 实践经验 1.Elasticsearch 的优势1.1 Elasticsearch 解决的核心问题1.1.1 传统方案的短板1.1.2 Elasticsearch 的解决方案 1.2 与大数据组件的对比优势1.3 关键优势技术支撑1.4 Elasticsearch 的竞品1.4.1 全文搜索领域1.4.2 日志分析…...

实战三:开发网页端界面完成黑白视频转为彩色视频

​一、需求描述 设计一个简单的视频上色应用&#xff0c;用户可以通过网页界面上传黑白视频&#xff0c;系统会自动将其转换为彩色视频。整个过程对用户来说非常简单直观&#xff0c;不需要了解技术细节。 效果图 ​二、实现思路 总体思路&#xff1a; 用户通过Gradio界面上…...