CEC2017(Python):五种算法(DE、RFO、OOA、PSO、GWO)求解CEC2017
一、5种算法简介
1、差分进化算法DE
2、红狐优化算法RFO
3、鱼鹰优化算法OOA
4、粒子群优化算法PSO
5、灰狼优化算法GWO
二、CEC2017简介

参考文献:
[1]Awad, N. H., Ali, M. Z., Liang, J. J., Qu, B. Y., & Suganthan, P. N. (2016). “Problem definitions and evaluation criteria for the CEC2017 special session and competition on single objective real-parameter numerical optimization,” Technical Report. Nanyang Technological University, Singapore.
三、5种算法求解CEC2017
(1)部分Python代码
import cec2017.functions as functions
import numpy as np
import matplotlib.pyplot as plt
from DE import DE
from RFO import RFO
from OOA import OOA
from PSO import PSO
from GWO import GWOplt.rcParams['font.sans-serif']=['Microsoft YaHei']
#主程序
function_name =7 #CEC2017 测试函数 1-29
SearchAgents_no = 50#种群大小
Max_iter = 100#最大迭代次数
dim=30;#维度只能是 10/30/50/100
lb = -100*np.ones(dim)#下界
ub = 100*np.ones(dim)#上界
fobj= functions.all_functions[function_name-1]BestX1,BestF1,curve1 = DE(SearchAgents_no, Max_iter,lb,ub,dim,fobj)#问题求解
BestX2,BestF2,curve2 = RFO(SearchAgents_no, Max_iter,lb,ub,dim,fobj)#问题求解
BestX3,BestF3,curve3 = OOA(SearchAgents_no, Max_iter,lb,ub,dim,fobj)#问题求解
BestX4,BestF4,curve4 = PSO(SearchAgents_no, Max_iter,lb,ub,dim,fobj)#问题求解
BestX5,BestF5,curve5 = GWO(SearchAgents_no, Max_iter,lb,ub,dim,fobj)#问题求解
#画收敛曲线图
Labelstr=['DE','RFO','OOA','PSO','GWO']
Colorstr=['r','g','b','k','c']
if BestF1>0:plt.semilogy(curve1,color=Colorstr[0],linewidth=2,label=Labelstr[0])plt.semilogy(curve2,color=Colorstr[1],linewidth=2,label=Labelstr[1])plt.semilogy(curve3,color=Colorstr[2],linewidth=2,label=Labelstr[2])plt.semilogy(curve4,color=Colorstr[3],linewidth=2,label=Labelstr[3])plt.semilogy(curve5,color=Colorstr[4],linewidth=2,label=Labelstr[4])
else:plt.plot(curve1,color=Colorstr[0],linewidth=2,label=Labelstr[0])plt.plot(curve2,color=Colorstr[1],linewidth=2,label=Labelstr[1])plt.plot(curve3,color=Colorstr[2],linewidth=2,label=Labelstr[2])plt.plot(curve4,color=Colorstr[3],linewidth=2,label=Labelstr[3])plt.plot(curve5,color=Colorstr[4],linewidth=2,label=Labelstr[4])plt.xlabel("Iteration")
plt.ylabel("Fitness")
plt.xlim(0,Max_iter)
plt.title("CEC2017-F"+str(function_name))
plt.legend()
plt.savefig(str(function_name)+'.png')
plt.show()
#

(2)部分结果







四、完整Python代码

相关文章:
CEC2017(Python):五种算法(DE、RFO、OOA、PSO、GWO)求解CEC2017
一、5种算法简介 1、差分进化算法DE 2、红狐优化算法RFO 3、鱼鹰优化算法OOA 4、粒子群优化算法PSO 5、灰狼优化算法GWO 二、CEC2017简介 参考文献: [1]Awad, N. H., Ali, M. Z., Liang, J. J., Qu, B. Y., & Suganthan, P. N. (2016). “Problem defini…...
数字身份验证:跨境电商如何应对账户安全挑战?
在数字化时代,随着跨境电商的蓬勃发展,账户安全问题逐渐成为行业和消费者关注的焦点。随着网络犯罪日益猖獗,用户的数字身份安全面临着更加复杂的威胁。本文将深入探讨数字身份验证在跨境电商中的重要性,并探讨各种创新技术和策略…...
Nature | 大型语言模型(LLM)能够发现和产生新知识吗?
大型语言模型(LLM)是基于大量数据进行预训练的超大型深度学习模型。底层转换器是一组神经网络,这些神经网络由具有自注意力功能的编码器和解码器组成。编码器和解码器从一系列文本中提取含义,并理解其中的单词和短语之间的关系。通…...
C# 使用ZXing.Net生成二维码和条码
写在前面 条码生成是一个经常需要处理的功能,本文介绍一个条码处理类库,ZXing用Java实现的多种格式的一维二维条码图像处理库,而ZXing.Net是其.Net版本的实现。 在WinForm下使用该类库需要从NuGet安装两个组件: ZXing.Net ZXing…...
Windows系统配置pytorch环境,Jupyter notebook编辑器安装使用(深度学习本地篇)
如今现在好一点的笔记本都自带英伟达独立显卡,对于一些简单的深度学习项目,是不需要连接服务器的,甚至数据量不大的话,cpu也足够进行训练学习。我把电脑上一些以前的笔记整理一下,记录起来,方便自己35岁事业…...
详解“量子极限下运行的光学神经网络”——相干伊辛机
量子计算和量子启发计算可能成为解答复杂优化问题的新前沿,而经典计算机在历史上是无法解决这些问题的。 当今最快的计算机可能需要数千年才能完成高度复杂的计算,包括涉及许多变量的组合优化问题;研究人员正在努力将解决这些问题所需的时间缩…...
uniapp通过蓝牙传输数据 (安卓)
在uni-app中,可以通过原生插件的方式来实现蓝牙传输数据的功能。以下是一般的步骤: 1. 创建一个原生插件 在uni-app项目的根目录下,创建一个原生插件的目录,比如"uni-bluetooth"。然后在该目录下创建一个"Androi…...
LT8612UX-HDMI2.0 to HDMI2.0 and VGA Converter with Audio,支持三通道视频DAC
HDMI2.0 to HDMI2.0 and VGA Converter with Audio 1. 描述 LT8612UX是一个HDMI到HDMI和vga转换器,它将HDMI2.0数据流转换为HDMI2.0信号和模拟RGB信号。 它还输出8通道I2S和SPDIF信号,使高质量的7.1通道音频。 LT8612UX支持符合HDMI2.0/ 1.4规范的…...
python gui programming cook,python gui视频教程
大家好,给大家分享一下python gui programming cook,很多人还不知道这一点。下面详细解释一下。现在让我们来看看! Source code download: 本文相关源码 前言 上一节我们实现了明细窗体GUI的搭建,并且设置了查看、修改、添加三种不…...
亚马逊bsr排名的影响因素,如何提高BSR排名?-站斧浏览器
亚马逊BSR排名的影响因素有哪些? 销售速度:BSR排名主要基于产品的销售速度,即最近一段时间内的销售量。销售速度越快,BSR排名越高。 销售历史:亚马逊会考虑产品的历史销售数据,新上架的产品可能需要一段时…...
K8s-安全机制
目录 1、//机制说明 2、认证(Authentication) 3、鉴权(Authorization) 4、准入控制(Admission Control) 5、实践:创建一个用户只能管理指定的命名空间 1、//机制说明 Kubernetes 作为一个分…...
GPT-3: Language Models are Few-Shot Learners
GPT-3 论文 数据集 CommonCrawl:文章通过高质量参考语料库对CommonCrawl数据集进行了过滤,并通过模糊去重对文档进行去重,且增加了高质量参考语料库以增加文本的多样性。WebText:文章采用了类似GPT-2中的WebText文档收集清洗方…...
Qt Quick 用cmake怎么玩子项目
以下内容为本人的著作,如需要转载,请声明原文链接 微信公众号「ENG八戒」https://mp.weixin.qq.com/s/o-_aGqreuQda-ZmKktvxwA 以往在公司开发众多的项目中,都会出现要求本项目里部分功能模块代码需要具备保密性。如果需要对外输出demo工程&…...
大数据学习(29)-Spark Shuffle
&&大数据学习&& 🔥系列专栏: 👑哲学语录: 承认自己的无知,乃是开启智慧的大门 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言📝支持一下博主哦ᾑ…...
archiver error. Connect internal only, until freed.
[64000][257] ORA-00257: archiver error. Connect internal only, until freed.原因 归档日志写满了、闪回日志写满了(根本原因是服务器磁盘写满了) # 切换到oracle服务 su - oracle# 使用sysdba用户登录 解决方案:(https://blog.csdn.net/qq_37635373/article/details/933282…...
鸿蒙HarmonyOS-图表应用
简介 随着移动应用的不断发展,数据可视化成为提高用户体验和数据交流的重要手段之一。在HarmonyOS应用开发中,一个强大而灵活的图表库是实现这一目标的关键。而MPChart就是这样一款图表库,它为开发者提供了丰富的功能和灵活性,使得…...
elasticsearch 笔记三:查询建议介绍、Suggester、自动完成
一、查询建议介绍 1. 查询建议是什么? 查询建议,为用户提供良好的使用体验。主要包括: 拼写检查; 自动建议查询词(自动补全) 拼写检查如图: 自动建议查询词(自动补全)…...
【hyperledger-fabric】将智能合约部署到通道
简介 本文主要来自于B站视频教学视频,也主要参看了官方文档中下图这一章节。针对自己开发的代码做出相应的总结。 1.启动网络 # 跳转到指定的目录 cd /root/fabric/fabric-samples/test-network# 启动docker容器并且创建通道 ./network.sh up createChannel2.打…...
nginx设置跨域访问
目录 一:前端请求 二:后端设置 网站架构前端使用jquery请求,后端使用nginxphp-fpm 一:前端请求 <script> $.getJSON(http://nngzh.youjoy.com/cc.php, { openid: sd, }, function(res) { alert(res); if(res.code 0) …...
Go语言学习第二天
Go语言数组详解 var 数组变量名 [元素数量]Type 数组变量名:数组声明及使用时的变量名。 元素数量:数组的元素数量,可以是一个表达式,但最终通过编译期计算的结果必须是整型数值,元素数量不能含有到运行时才能确认大小…...
C++_核心编程_多态案例二-制作饮品
#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为:煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例,提供抽象制作饮品基类,提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...
质量体系的重要
质量体系是为确保产品、服务或过程质量满足规定要求,由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面: 🏛️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限,形成层级清晰的管理网络…...
python如何将word的doc另存为docx
将 DOCX 文件另存为 DOCX 格式(Python 实现) 在 Python 中,你可以使用 python-docx 库来操作 Word 文档。不过需要注意的是,.doc 是旧的 Word 格式,而 .docx 是新的基于 XML 的格式。python-docx 只能处理 .docx 格式…...
Linux云原生安全:零信任架构与机密计算
Linux云原生安全:零信任架构与机密计算 构建坚不可摧的云原生防御体系 引言:云原生安全的范式革命 随着云原生技术的普及,安全边界正在从传统的网络边界向工作负载内部转移。Gartner预测,到2025年,零信任架构将成为超…...
服务器--宝塔命令
一、宝塔面板安装命令 ⚠️ 必须使用 root 用户 或 sudo 权限执行! sudo su - 1. CentOS 系统: yum install -y wget && wget -O install.sh http://download.bt.cn/install/install_6.0.sh && sh install.sh2. Ubuntu / Debian 系统…...
STM32---外部32.768K晶振(LSE)无法起振问题
晶振是否起振主要就检查两个1、晶振与MCU是否兼容;2、晶振的负载电容是否匹配 目录 一、判断晶振与MCU是否兼容 二、判断负载电容是否匹配 1. 晶振负载电容(CL)与匹配电容(CL1、CL2)的关系 2. 如何选择 CL1 和 CL…...
C语言中提供的第三方库之哈希表实现
一. 简介 前面一篇文章简单学习了C语言中第三方库(uthash库)提供对哈希表的操作,文章如下: C语言中提供的第三方库uthash常用接口-CSDN博客 本文简单学习一下第三方库 uthash库对哈希表的操作。 二. uthash库哈希表操作示例 u…...
HubSpot推出与ChatGPT的深度集成引发兴奋与担忧
上周三,HubSpot宣布已构建与ChatGPT的深度集成,这一消息在HubSpot用户和营销技术观察者中引发了极大的兴奋,但同时也存在一些关于数据安全的担忧。 许多网络声音声称,这对SaaS应用程序和人工智能而言是一场范式转变。 但向任何技…...
Java 与 MySQL 性能优化:MySQL 慢 SQL 诊断与分析方法详解
文章目录 一、开启慢查询日志,定位耗时SQL1.1 查看慢查询日志是否开启1.2 临时开启慢查询日志1.3 永久开启慢查询日志1.4 分析慢查询日志 二、使用EXPLAIN分析SQL执行计划2.1 EXPLAIN的基本使用2.2 EXPLAIN分析案例2.3 根据EXPLAIN结果优化SQL 三、使用SHOW PROFILE…...
【java面试】微服务篇
【java面试】微服务篇 一、总体框架二、Springcloud(一)Springcloud五大组件(二)服务注册和发现1、Eureka2、Nacos (三)负载均衡1、Ribbon负载均衡流程2、Ribbon负载均衡策略3、自定义负载均衡策略4、总结 …...
