python自动合计各部周销
下载依赖
pip install openpyxl -i https://pypi.doubanio.com/simple
pip install pandas -i https://pypi.doubanio.com/simple
引入依赖
from openpyxl import load_workbook
from openpyxl import styles
from openpyxl.styles import *
import pandas as pd
import string
数据读入
filePath1 = './src/超级原始数据精修.xlsx'# 加载工作簿wb = load_workbook(filePath1)# 获取sheet页,修改第一个sheet页面为name1 = wb.sheetnames[0]ws1 = wb[name1]ws1.title = "销售明细"#销售明细df0 = pd.read_excel(filePath1, sheet_name='销售明细')
计算每周数据,并添加新列
获取表头字符串
# 获取列名
#column_names = df.columns
column_names_list = df0.columns.values
#获取列长度
col_num = len(column_names_list)
指定列求和
使用iloc选择要求和的列:
df['sum'] = code_table_data.iloc[:,3:6].sum(axis=1)
完整代码
from openpyxl import load_workbook
from openpyxl import styles
from openpyxl.styles import *
import pandas as pd
import string
# Press the green button in the gutter to run the script.
if __name__ == '__main__':filePath1 = './src/超级原始数据.xlsx'filePath2 = './src/数据精修.xlsx'# 加载工作簿wb = load_workbook(filePath1)# 获取sheet页,修改第一个sheet页面为name1 = wb.sheetnames[0]ws1 = wb[name1]ws1.title = "销售明细"wb.save(filePath1);# 销售明细df0 = pd.read_excel(filePath1, sheet_name='销售明细')column_names_list = df0.columns.valuescol_num = len(column_names_list)for k in range(0, int(col_num/7)):start_pos = k*7+1end_pos = k*7+7col_name = column_names_list[start_pos] +"到"+ column_names_list[end_pos]df0[col_name] = df0.iloc[:, start_pos:end_pos+1].sum(axis=1)# 将生成的工作表导入到程序中for k in range(1,len(column_names_list)):name=column_names_list[k]df0.pop(name)result_sheet = pd.ExcelWriter(filePath2, engine='openpyxl') # 先定义要存入的文件名xxx,然后分别存入xxx下不同的sheet# df1将0转变为空df0.to_excel(result_sheet, "销售明细", index=False, na_rep=0, inf_rep=0)# 这步不能省,否则不生成文件result_sheet.save()print(column_names_list)
# See PyCharm help at https://www.jetbrains.com/help/pycharm/
相关文章:
python自动合计各部周销
下载依赖 pip install openpyxl -i https://pypi.doubanio.com/simplepip install pandas -i https://pypi.doubanio.com/simple引入依赖 from openpyxl import load_workbook from openpyxl import styles from openpyxl.styles import * import pandas as pd import string…...
Java内存区域与内存溢出异常
Java与C++之间有一堵由内存分配和垃圾收集技术所围成的高墙,墙外面的人想进去,墙里面的人却想出来。 2.1 概述 对于从事C、C++程序开发的开发人员来说,在内存管理领域,他们即是拥有最高权力的“皇帝”,又是从事最基础工作的劳动人民——即拥有每一个对象的“所有权”,又…...
远程网络唤醒家庭主机(openwrt设置)
远程网络唤醒家庭主机(openwrt设置) 前提: 1.配置好主板bios的网络唤醒功能(网络教程自己百度一下找) 2.电脑开启网络唤醒功能(网络教程自己百度一下找) 3.路由器通过ddns实现域名和动态IP绑定内网穿透方法汇总_不修改光猫进行内网穿透-C…...
Spring知识02
1、这边是做单元测试的 2、项目部署上线的时候需要把Test那里注解掉 3、pom.xml的坐标系,用来导出包给别人用 4、项目名称,artifactId,name属性名保持一致 5、maven中央仓库那里可以看到导包之后会随着附加的内容 6、class.getSingleName获取…...
Linux服务器搭建笔记-006:拓展/home目录容量
一、问题说明 Ubuntu服务器在使用过程中创建的新用户,每位用户会在/home目录下生成一个属于其个人的主文件夹。如果不限制各个用户的使用空间,所有的用户都会共用/home所挂载的硬盘。在这种多用户情况下,会很快的填满/home目录,导…...
元宇宙与VR虚拟现实的未来如何?
从科幻小说到商业现实 自从 Facebook年更名为 Meta 以来,关于元宇宙的热议不断,人们对虚拟世界的兴趣也重新燃起,因为尽管虚拟现实 (VR) 的概念由来已久,但该技术现在才开始真正得以应用。 定义元宇宙和虚拟现实 首先是 The Met…...
微服务事务处理:CAP 定理和最终一致性的关系
CAP 定理和最终一致性 CAP 定理和最终一致性是两个密切相关的概念,但它们在范围和细节上有所不同。以下是比较: CAP 定理 **正式陈述:**在分布式系统中,最多只能同时满足以下三个保证中的两个:一致性、可用性和分区…...
【Linux操作系统】探秘Linux奥秘:操作系统的入门与实战
🌈个人主页:Sarapines Programmer🔥 系列专栏:《操作系统实验室》🔖诗赋清音:柳垂轻絮拂人衣,心随风舞梦飞。 山川湖海皆可涉,勇者征途逐星辉。 目录 🪐1 初识Linux OS …...
Copilot概述:AI助手引领编程新纪元
前言: 随着人工智能(AI)技术的不断进步,编程领域也在逐渐迎来一场革命。GitHub Copilot,作为一款由 OpenAI 和 GitHub 合作开发的编程助手,引发了广泛的关注和讨论。本篇博客将全面概述 Copilot 的背景、功…...
最小覆盖子串(LeetCode 76)
文章目录 1.问题描述2.难度等级3.热门指数4.解题思路参考文献 1.问题描述 给你一个字符串 s 、一个字符串 t 。返回 s 中涵盖 t 所有字符的最小子串。如果 s 中不存在涵盖 t 所有字符的子串,则返回空字符串 “” 。 注意: 对于 t 中重复字符ÿ…...
Windows Sockets 2 笔记
文章目录 一、Winsock简介二、Windows中Winsock对网络协议支持的情况三、使用Winsock3.1 关于服务器和客户端3.2 创建基本Winsock应用程序3.3 初始化Winscok3.3.1 初始化步骤3.3.2 初始化的核心代码3.3.3 WSAStartup函数的协调3.3.4 WSACleanup函数3.3.5 初始化的完整代码 3.4 …...
13章总结
一.泛型 1.定义泛型类 泛型机制语法: 类名<T> 其中,T是泛型的名称,代表某一种类型。 【例13.6】创建带泛型的图书类 代码: 结果: 2.泛型的常规用法 (1)定义泛型类时声明多个变量 class MyClass<T1,T2>…...
(2023,3D NeRF,无图像变分分数蒸馏,单步扩散)SwiftBrush:具有变分分数蒸馏的一步文本到图像扩散模型
SwiftBrush : One-Step Text-to-Image Diffusion Model with Variational Score Distillation 公众:EDPJ(添加 VX:CV_EDPJ 或直接进 Q 交流群:922230617 获取资料) 目录 0. 摘要 1. 方法 1.1 基础 1.2 SwiftBrus…...
【WPF.NET开发】将路由事件标记为已处理和类处理
本文内容 先决条件何时将路由事件标记为已处理预览和浮升路由事件对实例和类路由事件处理程序复合控件中的输入事件禁止 尽管对于何时将路由事件标记为已处理没有绝对规则,但如果代码以重要方式响应事件,请考虑将事件标记为已处理。 标记为已处理的路由…...
2023年03月18日_微软office365 copilot相关介绍
文章目录 Copilot In WordCopilot In PowerpointCopilot In ExcelCopilot In OutlookCopilot In TeamsBusiness Chat1 - copilot in word2 - copilot in excel3 - copilot in powerpoint4 - copilot in outlook5 - copilot in teams6 - business chat word 1、起草草稿 2、自动…...
GBASE南大通用携手宇信科技打造“一表通”全链路解决方案
什么是“一表通”? “一表通”是国家金融监督管理总局为发挥统计监督效能、完善银行保险监管统计制度、推进监管数据标准化建设、打破数据壁垒,而制定的新型监管数据统计规范。相较于以往的报送接口,“一表通”提高了对报送时效性、校验准确…...
Python 内置高阶函数练习(Leetcode500.键盘行)
Python 内置高阶函数练习(Leetcode500.键盘行) 【一】试题 (1)地址: 500. 键盘行 - 力扣(LeetCode) (2)题目 给你一个字符串数组 words ,只返回可以使用在…...
【JavaWeb】day01-HTMLCSS
day01-HTML&CSS HTML 图片标签:<img> src:指定图像URL(绝对路径/相对路径)width:图像宽度(像素/相对于父元素的百分比)height:图像高度(像素/相对于父元素的百…...
【工具】windeployqt 在windows + vscode环境下打包
目录 0.背景简介 1.windeployqt简介 2.打包具体过程 1)用vscode编译,生成Release文件夹(也有Debug文件夹,但是发布版本一般都是用Release) 2)此时可以看下Release文件夹内,一般是.exe可执行…...
跟着LearnOpenGL学习12--光照贴图
文章目录 一、前言二、漫反射贴图三、镜面光贴图3.1、采样镜面光贴图 一、前言 在跟着LearnOpenGL学习11–材质中,我们讨论了让每个物体都拥有自己独特的材质从而对光照做出不同的反应的方法。这样子能够很容易在一个光照的场景中给每个物体一个独特的外观…...
QMC5883L的驱动
简介 本篇文章的代码已经上传到了github上面,开源代码 作为一个电子罗盘模块,我们可以通过I2C从中获取偏航角yaw,相对于六轴陀螺仪的yaw,qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...
Linux简单的操作
ls ls 查看当前目录 ll 查看详细内容 ls -a 查看所有的内容 ls --help 查看方法文档 pwd pwd 查看当前路径 cd cd 转路径 cd .. 转上一级路径 cd 名 转换路径 …...
对WWDC 2025 Keynote 内容的预测
借助我们以往对苹果公司发展路径的深入研究经验,以及大语言模型的分析能力,我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际,我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测,聊作存档。等到明…...
江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命
在华东塑料包装行业面临限塑令深度调整的背景下,江苏艾立泰以一场跨国资源接力的创新实践,重新定义了绿色供应链的边界。 跨国回收网络:废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点,将海外废弃包装箱通过标准…...
全志A40i android7.1 调试信息打印串口由uart0改为uart3
一,概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本:2014.07; Kernel版本:Linux-3.10; 二,Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01),并让boo…...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...
iOS性能调优实战:借助克魔(KeyMob)与常用工具深度洞察App瓶颈
在日常iOS开发过程中,性能问题往往是最令人头疼的一类Bug。尤其是在App上线前的压测阶段或是处理用户反馈的高发期,开发者往往需要面对卡顿、崩溃、能耗异常、日志混乱等一系列问题。这些问题表面上看似偶发,但背后往往隐藏着系统资源调度不当…...
力扣热题100 k个一组反转链表题解
题目: 代码: func reverseKGroup(head *ListNode, k int) *ListNode {cur : headfor i : 0; i < k; i {if cur nil {return head}cur cur.Next}newHead : reverse(head, cur)head.Next reverseKGroup(cur, k)return newHead }func reverse(start, end *ListNode) *ListN…...
【大模型】RankRAG:基于大模型的上下文排序与检索增强生成的统一框架
文章目录 A 论文出处B 背景B.1 背景介绍B.2 问题提出B.3 创新点 C 模型结构C.1 指令微调阶段C.2 排名与生成的总和指令微调阶段C.3 RankRAG推理:检索-重排-生成 D 实验设计E 个人总结 A 论文出处 论文题目:RankRAG:Unifying Context Ranking…...
StarRocks 全面向量化执行引擎深度解析
StarRocks 全面向量化执行引擎深度解析 StarRocks 的向量化执行引擎是其高性能的核心设计,相比传统行式处理引擎(如MySQL),性能可提升 5-10倍。以下是分层拆解: 1. 向量化 vs 传统行式处理 维度行式处理向量化处理数…...
