当前位置: 首页 > news >正文

python自动合计各部周销

下载依赖

pip install openpyxl -i https://pypi.doubanio.com/simple
pip install pandas -i https://pypi.doubanio.com/simple

引入依赖

from openpyxl import load_workbook
from openpyxl import styles
from openpyxl.styles import *
import pandas as pd
import string

数据读入

	filePath1 = './src/超级原始数据精修.xlsx'# 加载工作簿wb = load_workbook(filePath1)# 获取sheet页,修改第一个sheet页面为name1 = wb.sheetnames[0]ws1 = wb[name1]ws1.title = "销售明细"#销售明细df0 = pd.read_excel(filePath1, sheet_name='销售明细')

计算每周数据,并添加新列

获取表头字符串

# 获取列名
#column_names = df.columns
column_names_list = df0.columns.values
#获取列长度
col_num = len(column_names_list)

指定列求和

使用iloc选择要求和的列:

df['sum'] = code_table_data.iloc[:,3:6].sum(axis=1)

完整代码

from openpyxl import load_workbook
from openpyxl import styles
from openpyxl.styles import *
import pandas as pd
import string
# Press the green button in the gutter to run the script.
if __name__ == '__main__':filePath1 = './src/超级原始数据.xlsx'filePath2 = './src/数据精修.xlsx'# 加载工作簿wb = load_workbook(filePath1)# 获取sheet页,修改第一个sheet页面为name1 = wb.sheetnames[0]ws1 = wb[name1]ws1.title = "销售明细"wb.save(filePath1);# 销售明细df0 = pd.read_excel(filePath1, sheet_name='销售明细')column_names_list = df0.columns.valuescol_num = len(column_names_list)for k in range(0, int(col_num/7)):start_pos = k*7+1end_pos = k*7+7col_name = column_names_list[start_pos] +"到"+ column_names_list[end_pos]df0[col_name] = df0.iloc[:, start_pos:end_pos+1].sum(axis=1)# 将生成的工作表导入到程序中for k in range(1,len(column_names_list)):name=column_names_list[k]df0.pop(name)result_sheet = pd.ExcelWriter(filePath2, engine='openpyxl')  # 先定义要存入的文件名xxx,然后分别存入xxx下不同的sheet# df1将0转变为空df0.to_excel(result_sheet, "销售明细", index=False, na_rep=0, inf_rep=0)# 这步不能省,否则不生成文件result_sheet.save()print(column_names_list)
# See PyCharm help at https://www.jetbrains.com/help/pycharm/

相关文章:

python自动合计各部周销

下载依赖 pip install openpyxl -i https://pypi.doubanio.com/simplepip install pandas -i https://pypi.doubanio.com/simple引入依赖 from openpyxl import load_workbook from openpyxl import styles from openpyxl.styles import * import pandas as pd import string…...

Java内存区域与内存溢出异常

Java与C++之间有一堵由内存分配和垃圾收集技术所围成的高墙,墙外面的人想进去,墙里面的人却想出来。 2.1 概述 对于从事C、C++程序开发的开发人员来说,在内存管理领域,他们即是拥有最高权力的“皇帝”,又是从事最基础工作的劳动人民——即拥有每一个对象的“所有权”,又…...

远程网络唤醒家庭主机(openwrt设置)

远程网络唤醒家庭主机(openwrt设置) 前提: 1.配置好主板bios的网络唤醒功能(网络教程自己百度一下找) 2.电脑开启网络唤醒功能(网络教程自己百度一下找) 3.路由器通过ddns实现域名和动态IP绑定内网穿透方法汇总_不修改光猫进行内网穿透-C…...

Spring知识02

1、这边是做单元测试的 2、项目部署上线的时候需要把Test那里注解掉 3、pom.xml的坐标系,用来导出包给别人用 4、项目名称,artifactId,name属性名保持一致 5、maven中央仓库那里可以看到导包之后会随着附加的内容 6、class.getSingleName获取…...

Linux服务器搭建笔记-006:拓展/home目录容量

一、问题说明 Ubuntu服务器在使用过程中创建的新用户,每位用户会在/home目录下生成一个属于其个人的主文件夹。如果不限制各个用户的使用空间,所有的用户都会共用/home所挂载的硬盘。在这种多用户情况下,会很快的填满/home目录,导…...

元宇宙与VR虚拟现实的未来如何?

从科幻小说到商业现实 自从 Facebook年更名为 Meta 以来,关于元宇宙的热议不断,人们对虚拟世界的兴趣也重新燃起,因为尽管虚拟现实 (VR) 的概念由来已久,但该技术现在才开始真正得以应用。 定义元宇宙和虚拟现实 首先是 The Met…...

微服务事务处理:CAP 定理和最终一致性的关系

CAP 定理和最终一致性 CAP 定理和最终一致性是两个密切相关的概念,但它们在范围和细节上有所不同。以下是比较: CAP 定理 **正式陈述:**在分布式系统中,最多只能同时满足以下三个保证中的两个:一致性、可用性和分区…...

【Linux操作系统】探秘Linux奥秘:操作系统的入门与实战

🌈个人主页:Sarapines Programmer🔥 系列专栏:《操作系统实验室》🔖诗赋清音:柳垂轻絮拂人衣,心随风舞梦飞。 山川湖海皆可涉,勇者征途逐星辉。 目录 🪐1 初识Linux OS …...

Copilot概述:AI助手引领编程新纪元

前言: 随着人工智能(AI)技术的不断进步,编程领域也在逐渐迎来一场革命。GitHub Copilot,作为一款由 OpenAI 和 GitHub 合作开发的编程助手,引发了广泛的关注和讨论。本篇博客将全面概述 Copilot 的背景、功…...

最小覆盖子串(LeetCode 76)

文章目录 1.问题描述2.难度等级3.热门指数4.解题思路参考文献 1.问题描述 给你一个字符串 s 、一个字符串 t 。返回 s 中涵盖 t 所有字符的最小子串。如果 s 中不存在涵盖 t 所有字符的子串,则返回空字符串 “” 。 注意: 对于 t 中重复字符&#xff…...

Windows Sockets 2 笔记

文章目录 一、Winsock简介二、Windows中Winsock对网络协议支持的情况三、使用Winsock3.1 关于服务器和客户端3.2 创建基本Winsock应用程序3.3 初始化Winscok3.3.1 初始化步骤3.3.2 初始化的核心代码3.3.3 WSAStartup函数的协调3.3.4 WSACleanup函数3.3.5 初始化的完整代码 3.4 …...

13章总结

一.泛型 1.定义泛型类 泛型机制语法&#xff1a; 类名<T> 其中&#xff0c;T是泛型的名称&#xff0c;代表某一种类型。 【例13.6】创建带泛型的图书类 代码&#xff1a; 结果&#xff1a; 2.泛型的常规用法 (1)定义泛型类时声明多个变量 class MyClass<T1,T2>…...

(2023,3D NeRF,无图像变分分数蒸馏,单步扩散)SwiftBrush:具有变分分数蒸馏的一步文本到图像扩散模型

SwiftBrush : One-Step Text-to-Image Diffusion Model with Variational Score Distillation 公众&#xff1a;EDPJ&#xff08;添加 VX&#xff1a;CV_EDPJ 或直接进 Q 交流群&#xff1a;922230617 获取资料&#xff09; 目录 0. 摘要 1. 方法 1.1 基础 1.2 SwiftBrus…...

【WPF.NET开发】将路由事件标记为已处理和类处理

本文内容 先决条件何时将路由事件标记为已处理预览和浮升路由事件对实例和类路由事件处理程序复合控件中的输入事件禁止 尽管对于何时将路由事件标记为已处理没有绝对规则&#xff0c;但如果代码以重要方式响应事件&#xff0c;请考虑将事件标记为已处理。 标记为已处理的路由…...

2023年03月18日_微软office365 copilot相关介绍

文章目录 Copilot In WordCopilot In PowerpointCopilot In ExcelCopilot In OutlookCopilot In TeamsBusiness Chat1 - copilot in word2 - copilot in excel3 - copilot in powerpoint4 - copilot in outlook5 - copilot in teams6 - business chat word 1、起草草稿 2、自动…...

GBASE南大通用携手宇信科技打造“一表通”全链路解决方案

什么是“一表通”&#xff1f; “一表通”是国家金融监督管理总局为发挥统计监督效能、完善银行保险监管统计制度、推进监管数据标准化建设、打破数据壁垒&#xff0c;而制定的新型监管数据统计规范。相较于以往的报送接口&#xff0c;“一表通”提高了对报送时效性、校验准确…...

Python 内置高阶函数练习(Leetcode500.键盘行)

Python 内置高阶函数练习&#xff08;Leetcode500.键盘行&#xff09; 【一】试题 &#xff08;1&#xff09;地址&#xff1a; 500. 键盘行 - 力扣&#xff08;LeetCode&#xff09; &#xff08;2&#xff09;题目 给你一个字符串数组 words &#xff0c;只返回可以使用在…...

【JavaWeb】day01-HTMLCSS

day01-HTML&CSS HTML 图片标签&#xff1a;<img> src&#xff1a;指定图像URL&#xff08;绝对路径/相对路径&#xff09;width&#xff1a;图像宽度&#xff08;像素/相对于父元素的百分比&#xff09;height&#xff1a;图像高度&#xff08;像素/相对于父元素的百…...

【工具】windeployqt 在windows + vscode环境下打包

目录 0.背景简介 1.windeployqt简介 2.打包具体过程 1&#xff09;用vscode编译&#xff0c;生成Release文件夹&#xff08;也有Debug文件夹&#xff0c;但是发布版本一般都是用Release&#xff09; 2&#xff09;此时可以看下Release文件夹内&#xff0c;一般是.exe可执行…...

跟着LearnOpenGL学习12--光照贴图

文章目录 一、前言二、漫反射贴图三、镜面光贴图3.1、采样镜面光贴图 一、前言 在跟着LearnOpenGL学习11–材质中&#xff0c;我们讨论了让每个物体都拥有自己独特的材质从而对光照做出不同的反应的方法。这样子能够很容易在一个光照的场景中给每个物体一个独特的外观&#xf…...

第19节 Node.js Express 框架

Express 是一个为Node.js设计的web开发框架&#xff0c;它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用&#xff0c;和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

反向工程与模型迁移:打造未来商品详情API的可持续创新体系

在电商行业蓬勃发展的当下&#xff0c;商品详情API作为连接电商平台与开发者、商家及用户的关键纽带&#xff0c;其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息&#xff08;如名称、价格、库存等&#xff09;的获取与展示&#xff0c;已难以满足市场对个性化、智能…...

django filter 统计数量 按属性去重

在Django中&#xff0c;如果你想要根据某个属性对查询集进行去重并统计数量&#xff0c;你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求&#xff1a; 方法1&#xff1a;使用annotate()和Count 假设你有一个模型Item&#xff0c;并且你想…...

linux 下常用变更-8

1、删除普通用户 查询用户初始UID和GIDls -l /home/ ###家目录中查看UID cat /etc/group ###此文件查看GID删除用户1.编辑文件 /etc/passwd 找到对应的行&#xff0c;YW343:x:0:0::/home/YW343:/bin/bash 2.将标红的位置修改为用户对应初始UID和GID&#xff1a; YW3…...

3-11单元格区域边界定位(End属性)学习笔记

返回一个Range 对象&#xff0c;只读。该对象代表包含源区域的区域上端下端左端右端的最后一个单元格。等同于按键 End 向上键(End(xlUp))、End向下键(End(xlDown))、End向左键(End(xlToLeft)End向右键(End(xlToRight)) 注意&#xff1a;它移动的位置必须是相连的有内容的单元格…...

服务器--宝塔命令

一、宝塔面板安装命令 ⚠️ 必须使用 root 用户 或 sudo 权限执行&#xff01; sudo su - 1. CentOS 系统&#xff1a; yum install -y wget && wget -O install.sh http://download.bt.cn/install/install_6.0.sh && sh install.sh2. Ubuntu / Debian 系统…...

中医有效性探讨

文章目录 西医是如何发展到以生物化学为药理基础的现代医学&#xff1f;传统医学奠基期&#xff08;远古 - 17 世纪&#xff09;近代医学转型期&#xff08;17 世纪 - 19 世纪末&#xff09;​现代医学成熟期&#xff08;20世纪至今&#xff09; 中医的源远流长和一脉相承远古至…...

七、数据库的完整性

七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...

【JVM】Java虚拟机(二)——垃圾回收

目录 一、如何判断对象可以回收 &#xff08;一&#xff09;引用计数法 &#xff08;二&#xff09;可达性分析算法 二、垃圾回收算法 &#xff08;一&#xff09;标记清除 &#xff08;二&#xff09;标记整理 &#xff08;三&#xff09;复制 &#xff08;四&#xff…...

WEB3全栈开发——面试专业技能点P4数据库

一、mysql2 原生驱动及其连接机制 概念介绍 mysql2 是 Node.js 环境中广泛使用的 MySQL 客户端库&#xff0c;基于 mysql 库改进而来&#xff0c;具有更好的性能、Promise 支持、流式查询、二进制数据处理能力等。 主要特点&#xff1a; 支持 Promise / async-await&#xf…...