当前位置: 首页 > news >正文

R_handbook_作图专题

ggplot基本作图





1 条形图

library(ggplot2)
ggplot(biopics) + geom_histogram(aes(x = year_release),binwidth=1,fill="gray")

2 堆砌柱状图

ggplot(biopics, aes(x=year_release)) +geom_bar(aes(fill=subject_sex))

3 堆砌比例柱状图

ggplot(biopics, aes(x=year_release)) +geom_bar(aes(fill=subject_sex),position = 'fill')

4 马赛克图

library(vcd)  
bio_ques_d <- biopics[,c(11,13)]
bio_ques_d$subject_race <- ifelse(is.na(bio_ques_d$subject_race ), "missing",ifelse(bio_ques_d$subject_race == "White","White", "nonwhite"))
biq_ques_d_table <- table(bio_ques_d$subject_race,bio_ques_d$subject_sex)
mosaicplot(biq_ques_d_table) 

5 双散点图

process_var <- c('v32', 'v33', 'v34', 'v35', 'v36', 'v37')
for (i in c(1:6)){var_clean <- paste(process_var[i],'clean',sep = '_')data[,var_clean] <- ifelse(data[,process_var[i]] == 'trust completely',1,ifelse(data[,process_var[i]] == 'trust somewhat',2,ifelse(data[,process_var[i]] == 'do not trust very much',3,ifelse(data[,process_var[i]] == 'do not trust at all',4,NA))))
}
data$intp.trust <- rowSums(data[,c(438:443)],na.rm = TRUE)
data$intp.trust <- data$intp.trust/6
ggplot(data[data$country == 'Iceland',], aes(x=confidence, y=intp.trust, colour=v225)) + geom_point()

6 双密度图

ggplot(data=start_s_country_data) +geom_density(aes(x=residual,color=as.factor(v225),))## 自定义图例的情况
ggplot(data=data) +geom_density(aes(x=LW, color = "LW")) + geom_density(aes(x=LP, color = "LP")) + labs(title="") + xlab("Value") + theme(legend.title=element_blank(),legend.position = c(0.9, 0.9))

ggplot(data ) +geom_point(aes(x = No.education, y=Median.year.of.schooling)) + geom_smooth(aes(x = No.education, y=Median.year.of.schooling), method = 'lm') + theme_classic() 

7 双折线图与多图展示

library(dplyr)
library(devtools)
library(cowplot)plot_grid(plot1,plot3,plot5,plot2,plot4,plot6,ncol=3,nrow=2)
bio_ques_f <- biopics[,c(4,11,13)]
bio_ques_f$subject_race <- ifelse(is.na(bio_ques_f$subject_race ), "missing",ifelse(bio_ques_f$subject_race == "White","White", "nonwhite"))planes <- group_by(bio_ques_f, year_release, subject_race, subject_sex)
bio_ques_f_summary <- summarise(planes, count = n())
planes <- group_by(bio_ques_f,year_release)
bio_ques_f_year<- summarise(planes,count_year = n())bio_ques_f_summary <- left_join(bio_ques_f_summary,bio_ques_f_year,c("year_release" = "year_release"))
bio_ques_f_summary$prop <- bio_ques_f_summary$count / bio_ques_f_summary$count_yeardata_missing_female <- subset(bio_ques_f_summary,with(bio_ques_f_summary,(subject_race == 'missing') & (subject_sex == 'Female')))
data_missing_male <- subset(bio_ques_f_summary,with(bio_ques_f_summary,(subject_race == 'missing') & (subject_sex == 'Male')))
data_nonwhite_female <- subset(bio_ques_f_summary,with(bio_ques_f_summary,(subject_race == 'nonwhite') & (subject_sex == 'Female')))
data_nonwhite_male <- subset(bio_ques_f_summary,with(bio_ques_f_summary,(subject_race == 'nonwhite') & (subject_sex == 'Male')))
data_white_female <- subset(bio_ques_f_summary,with(bio_ques_f_summary,(subject_race == 'White') & (subject_sex == 'Female')))
data_white_male <- subset(bio_ques_f_summary,with(bio_ques_f_summary,(subject_race == 'White') & (subject_sex == 'Male')))plot1 <- ggplot(data_missing_female)+geom_line(aes(x=year_release,y=count),color="red") + geom_line(aes(x=year_release,y=prop),color="blue") +labs(title="missing and female")
plot2 <- ggplot(data_missing_male)+geom_line(aes(x=year_release,y=count),color="red") + geom_line(aes(x=year_release,y=prop),color="blue") +labs(title="missing and male")
plot3 <- ggplot(data_nonwhite_female)+geom_line(aes(x=year_release,y=count),color="red") + geom_line(aes(x=year_release,y=prop),color="blue") +labs(title="nonwhite and female")
plot4 <- ggplot(data_nonwhite_male)+geom_line(aes(x=year_release,y=count),color="red") + geom_line(aes(x=year_release,y=prop),color="blue") +labs(title="nonwhite and male")
plot5 <- ggplot(data_white_female)+geom_line(aes(x=year_release,y=count),color="red") + geom_line(aes(x=year_release,y=prop),color="blue") +labs(title="white and female")
plot6 <- ggplot(data_white_male)+geom_line(aes(x=year_release,y=count),color="red") + geom_line(aes(x=year_release,y=prop),color="blue") +labs(title="white and male")plot_grid(plot1,plot3,plot5,plot2,plot4,plot6,ncol=3,nrow=2)

ggplot作图美化

1 标题居中

ggplot(data_selected, aes(x=AREA.NAME)) +geom_bar(aes(fill=year)) + labs(title = 'The bar plot of AREA.NAME') +theme_classic() + theme(plot.title = element_text(hjust = 0.5))

2 X轴标签旋转

ggplot(data_selected, aes(x=AREA.NAME)) +geom_bar(aes(fill=year)) + labs(title = 'The bar plot of AREA.NAME') +theme_classic() + theme(plot.title = element_text(hjust = 0.5)) + theme(axis.text.x=element_text(face="bold",size=8,angle=270,color="black"))

3 变更label名

ggplot(data=data) + geom_line(aes(x=index,y=data,group=line,color=result)) + theme_classic() + scale_colour_manual(values=c("red", "blue"), labels=c("lose", "win")) 

ggforce

ggforce能对绘制的图增加聚类图层,包括圆形、椭圆形、方形能多种。

North_latitude <- c(47.5, 52.3, 54.8, 48.4, 54.2,54.8, 54.4, 48.8, 50.5, 52.7,46.5, 46.9, 45.1, 45.9, 50.7,48.5, 48.3, 48.1, 48.8, 49.4)
Elevation <- c(2, 1, 1, 2, 1,1, 1, 2, 2, 1,2, 2, 2, 2, 1,2, 2, 1, 1, 1)
Temperature <- c(39.27, 39.00, 38.35, 37.58, 39.38,39.05, 39.65, 38.66, 37.97, 40.10,37.05, 37.19, 36.92, 36.70, 38.01,37.26, 36.97, 36.95, 37.68, 37.55)
data <- data.frame(North_latitude = North_latitude,Elevation = Elevation,Temperature = Temperature)
data$Elevation <- as.factor(data$Elevation)
dim(data)

library(ggplot2)
library(ggforce)
ggplot(data=data,aes(x=North_latitude,y=Temperature,color=Elevation))+
geom_point()+
geom_mark_circle(aes(fill=Elevation),alpha=0.4)+
theme_classic() +
labs(title = 'The relationship between latitude and temperature') +theme(plot.title = element_text(hjust = 0.5))

地理位置图

library(ggplot2)
library(viridis)
library(cvTools)
library(dplyr)data <- read.csv("Reef_Check_with_cortad_variables_with_annual_rate_of_SST_change.csv")world_map <- map_data("world")
ggplot() + geom_polygon(data =world_map, aes(x=long, y = lat, group = group), fill="grey", alpha=0.3) +geom_point(data =data, alpha = 0.2, aes(y=Latitude.Degrees, x= Longitude.Degrees , size=Average_bleaching, color=Average_bleaching))  + scale_colour_viridis() + theme_minimal()

igraph网络图

library(igraph)webforum_graph <- webforum[webforum$Date > as.Date("2010-12-01"), ]
webforum_graph <- webforum_graph[webforum_graph$Date < as.Date("2010-12-31"), ]# generate node dataframe
AuthorID <- unique(as.numeric(webforum_graph$AuthorID))
ThreadID <- unique(as.numeric(webforum_graph$ThreadID))
name <- c(AuthorID, ThreadID)
type <- c(rep("Author", length(AuthorID)) , rep("Thread", length(ThreadID)))
webforum_node <- data.frame(name = name, type = type)# generate edge dataframe
webforum_graph <- webforum_graph[,c("AuthorID", "ThreadID")]# generate graph dataframe
graph <- graph_from_data_frame(webforum_graph, directed = FALSE, vertices=webforum_node) set.seed(30208289)plot(graph,  layout= layout.fruchterman.reingold,  vertex.size=10,   vertex.shape="circle",    vertex.color=ifelse(V(graph)$type == "Thread", "red", "blue"),vertex.label=NULL, 	 vertex.label.cex=0.7,    vertex.label.color='black',  vertex.label.dist=0,edge.arrow.size=0.2, edge.width = 0.5, edge.label=V(graph)$year, edge.label.cex=0.5,edge.color="black") 

相关文章:

R_handbook_作图专题

ggplot基本作图 1 条形图 library(ggplot2) ggplot(biopics) geom_histogram(aes(x year_release),binwidth1,fill"gray") 2 堆砌柱状图 ggplot(biopics, aes(xyear_release)) geom_bar(aes(fillsubject_sex)) 3 堆砌比例柱状图 ggplot(biopics, aes(xyear_rele…...

关于Python里xlwings库对Excel表格的操作(二十五)

这篇小笔记主要记录如何【如何使用xlwings库的“Chart”类创建一个新图表】。 前面的小笔记已整理成目录&#xff0c;可点链接去目录寻找所需更方便。 【目录部分内容如下】【点击此处可进入目录】 &#xff08;1&#xff09;如何安装导入xlwings库&#xff1b; &#xff08;2…...

2024 年软件工程将如何发展

软件开发目前正在经历一场深刻的变革&#xff0c;其特点是先进自动化的悄然但显着的激增。这一即将发生的转变有望以前所未有的规模简化高质量应用程序的创建和部署。 它不是单一技术引领这一演变&#xff0c;而是创新的融合。从人工智能(AI) 和数字孪生技术&#xff0c;到植根…...

【Git】git基础

Git 命令 git config --globle user.name ""git config --globle user.email ""git config -lgit config --globle --unset []git add []git commit -m ""]git log//当行且美观 git log --prettyoneline//以图形化和简短的方式 git log --grap…...

Linux中账号和权限管理

目录 一.用户账号和组账号&#xff1a; 1.用户账号类型&#xff1a; 2.组账号类型&#xff1a; 3.系统区别用户的方法 &#xff1a; 4.用户账号文件&#xff1a; 二.Linux中账户相关命令&#xff1a; 1.useradd&#xff1a; 2.passwd&#xff1a; 3.usermod&#xff1a…...

Resnet BatchNormalization 迁移学习

时间&#xff1a;2015 网络中的亮点&#xff1a; 超深的网络结构&#xff08;突破1000层&#xff09;提出residual模块使用Batch Normalization加速训练&#xff08;丢弃dropout&#xff09; 层数越深效果越好&#xff1f; 是什么样的原因导致更深的网络导致的训练效果更差呢…...

Unity检测地面坡度丨人物上坡检测

Unity检测地面坡度 前言使用 代码 前言 此功能为&#xff0c;人物在爬坡等功能时可以检测地面坡度从而完成向某个方向给力或者完成其他操作 使用 其中我们创建了脚本GradeCalculation&#xff0c;把脚本挂载到人物上即可&#xff0c;或者有其他的使用方式&#xff0c;可自行…...

SASS循环

<template><div><button class"btn type-1">默认按钮</button><button class"type-2">主要按钮</button><button class"type-3">成功按钮</button><button class"type-4">信息…...

Java超高精度无线定位技术--UWB (超宽带)人员定位系统源码

UWB室内定位技术是一种全新的、与传统通信技术有极大差异的通信新技术。它不需要使用传统通信体制中的载波&#xff0c;而是通过发送和接收具有纳秒或纳秒级以下的极窄脉冲来传输数据&#xff0c;从而具有GHz量级的带宽。 UWB&#xff08;超宽带&#xff09;高精度定位系统是一…...

系列十一、解压文件到指定目录

一、解压文件到指定目录 1.1、需求 Linux的/opt目录有一个文件zookeeper-3.4.11.tar.gz&#xff0c;我现在想把该文件解压至/usr/local/目录&#xff0c;那么应该怎么做呢&#xff1f; 语法&#xff1a;tar -zxvf xxx -C /usr/local/ tar -zxvf zookeeper-3.4.11.tar.gz -C /u…...

PHP Swoole Client

PHP常用socket创建TCP连接&#xff0c;使用CURL创建HTTP连接&#xff0c;为了简化操作&#xff0c;Swoole提供了Client类用于实现客户端功能&#xff0c;并增加了异步非阻塞模式&#xff0c;让用户在客户端也能使用事件循环。 作为客户端使用&#xff0c;Swoole Client可以在F…...

《QDebug 2023年12月》

一、Qt Widgets 问题交流 1. 二、Qt Quick 问题交流 1.Q_REVISION 标记的信号槽或者 REVISION 标记的属性&#xff0c;在子类中访问 Q_REVISION 是 Qt 用来做版本控制的一个宏。以 QQuickWindow 为例&#xff0c;继承后去访问 REVISION 标记的 opacity 属性或者 Q_REVISION…...

sklearn 中matplotlib编制图表

代码 # 导入pandas库&#xff0c;并为其设置别名pd import pandas as pd import matplotlib.pyplot as plt# 使用pandas的read_csv函数读取名为iris.csv的文件&#xff0c;将数据存储在iris_data变量中 iris_data pd.read_csv(data/iris.txt,sep\t)# 使用groupby方法按照&quo…...

【Docker-Dev】Mac M2 搭建docker的redis环境

Redis的dev环境docker搭建 1、前言2、官方文档重点信息提取2.1、创建redis实例2.2、使用自己的redis.conf文件。 3、单机版redis搭建4、redis集群版4.1、一些验证4.2、一些问题 结语 1、前言 本文主要针对M2下&#xff0c;相应进行开发环境搭建&#xff0c;然后做一个文档记录…...

docker +gitee+ jenkins +maven项目 (一)

jenkins环境和插件配置 文章目录 jenkins环境和插件配置前言一、环境版本二、jenkins插件三、环境安装总结 前言 现在基本都是走自动化运维&#xff0c;想到用docker 来部署jenkins &#xff0c;然后jenkins来部署java代码&#xff0c;做到了开箱即用&#xff0c;自动发布代码…...

IDEA 开发中常用的快捷键

目录 Ctrl 的快捷键 Alt 的快捷键 Shift 的快捷键 Ctrl Alt 的快捷键 Ctrl Shift 的快捷键 其他的快捷键 Ctrl 的快捷键 Ctrl F 在当前文件进行文本查找 &#xff08;必备&#xff09; Ctrl R 在当前文件进行文本替换 &#xff08;必备&#xff09; Ctrl Z 撤…...

Ubuntu Desktop 死机处理

Ubuntu Desktop 死机处理 当 Ubuntu Desktop 死机时&#xff0c;除了长按电源键重启&#xff0c;还可以使用如下两种方式处理。 方式1&#xff1a;ctrlaltFn 使用 ctrl alt F3~F6: 切换到其他 tty 命令行。 执行 top 命令查看资源占用最多的进程&#xff0c;然后使用 kill…...

Hermite矩阵

Hermite矩阵 文章目录 Hermite矩阵一、正规矩阵【定义】A^H^矩阵【定理】 A^H^的运算性质【定义】正规矩阵、特殊的正规矩阵【定理】与正规矩阵酉相似的矩阵也是正规矩阵【定理】正规的上(下)三角矩阵必为对角矩阵【定义】复向量的内积【定理】Schmitt正交化 二、酉矩阵&#x…...

HTML 实操试题(二)

创建一个简单的HTML文档&#xff1a; 包含<!DOCTYPE html>声明。包含<html>标签&#xff0c;并设置lang属性为英语。包含<head>标签&#xff0c;其中包含<meta charset"UTF-8">和一个自定义的页面标题。包含<body>标签&#xff0c;其…...

MongoDB 面试题

MongoDB 面试题 1. 什么是MongoDB&#xff1f; MongoDB是一种非关系型数据库&#xff0c;被广泛用于大型数据存储和分布式系统的构建。MongoDB支持的数据模型比传统的关系型数据库更加灵活&#xff0c;支持动态查询和索引&#xff0c;也支持BSON格式的数据存储&#xff0c;这…...

Linux 文件类型,目录与路径,文件与目录管理

文件类型 后面的字符表示文件类型标志 普通文件&#xff1a;-&#xff08;纯文本文件&#xff0c;二进制文件&#xff0c;数据格式文件&#xff09; 如文本文件、图片、程序文件等。 目录文件&#xff1a;d&#xff08;directory&#xff09; 用来存放其他文件或子目录。 设备…...

Flask RESTful 示例

目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题&#xff1a; 下面创建一个简单的Flask RESTful API示例。首先&#xff0c;我们需要创建环境&#xff0c;安装必要的依赖&#xff0c;然后…...

<6>-MySQL表的增删查改

目录 一&#xff0c;create&#xff08;创建表&#xff09; 二&#xff0c;retrieve&#xff08;查询表&#xff09; 1&#xff0c;select列 2&#xff0c;where条件 三&#xff0c;update&#xff08;更新表&#xff09; 四&#xff0c;delete&#xff08;删除表&#xf…...

django filter 统计数量 按属性去重

在Django中&#xff0c;如果你想要根据某个属性对查询集进行去重并统计数量&#xff0c;你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求&#xff1a; 方法1&#xff1a;使用annotate()和Count 假设你有一个模型Item&#xff0c;并且你想…...

vue3 字体颜色设置的多种方式

在Vue 3中设置字体颜色可以通过多种方式实现&#xff0c;这取决于你是想在组件内部直接设置&#xff0c;还是在CSS/SCSS/LESS等样式文件中定义。以下是几种常见的方法&#xff1a; 1. 内联样式 你可以直接在模板中使用style绑定来设置字体颜色。 <template><div :s…...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)

文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心

当仓库学会“思考”&#xff0c;物流的终极形态正在诞生 想象这样的场景&#xff1a; 凌晨3点&#xff0c;某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径&#xff1b;AI视觉系统在0.1秒内扫描包裹信息&#xff1b;数字孪生平台正模拟次日峰值流量压力…...

Mac下Android Studio扫描根目录卡死问题记录

环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中&#xff0c;提示一个依赖外部头文件的cpp源文件需要同步&#xff0c;点…...

云原生玩法三问:构建自定义开发环境

云原生玩法三问&#xff1a;构建自定义开发环境 引言 临时运维一个古董项目&#xff0c;无文档&#xff0c;无环境&#xff0c;无交接人&#xff0c;俗称三无。 运行设备的环境老&#xff0c;本地环境版本高&#xff0c;ssh不过去。正好最近对 腾讯出品的云原生 cnb 感兴趣&…...

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数

高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...