CEC2017(Python):粒子群优化算法PSO求解CEC2017(提供Python代码)
一、CEC2017简介

参考文献:
[1]Awad, N. H., Ali, M. Z., Liang, J. J., Qu, B. Y., & Suganthan, P. N. (2016). “Problem definitions and evaluation criteria for the CEC2017 special session and competition on single objective real-parameter numerical optimization,” Technical Report. Nanyang Technological University, Singapore.
二、粒子群优化算法PSO求解CEC2017
(1)部分Python代码
from PSO import PSO
import matplotlib.pyplot as plt
import numpy as np
import cec2017.functions as functions
#主程序
function_name =7 #测试函数 1-29
SearchAgents_no = 50#种群大小
Max_iter = 100#最大迭代次数
dim=30;#维度只能是 10/30/50/100
lb = -100*np.ones(dim)#下界
ub = 100*np.ones(dim)#上界
fobj= functions.all_functions[function_name-1]
BestX,BestF,curve = PSO(SearchAgents_no, Max_iter,lb,ub,dim,fobj)#问题求解#画收敛曲线图
if BestF>0:plt.semilogy(curve,color='g',linewidth=3,label='PSO')
else:plt.plot(curve,color='g',linewidth=3,label='PSO')
plt.xlabel("Iteration")
plt.ylabel("Fitness")
plt.xlim(0,Max_iter)
plt.title("CEC2017-F"+str(function_name))
plt.legend()
plt.savefig(str(function_name)+'.png')
plt.show()
print('\nThe best solution is:\n'+str(BestX))
print('\nThe best optimal value of the objective funciton is:\n'+str(BestF))

(2)部分结果







三、完整Python代码

相关文章:
CEC2017(Python):粒子群优化算法PSO求解CEC2017(提供Python代码)
一、CEC2017简介 参考文献: [1]Awad, N. H., Ali, M. Z., Liang, J. J., Qu, B. Y., & Suganthan, P. N. (2016). “Problem definitions and evaluation criteria for the CEC2017 special session and competition on single objective real-parameter numer…...
AUTOSAR从入门到精通- 虚拟功能总线(RTE)(一)
目录 前言 几个高频面试题目 RTE S/R接口implicit与Explicit的实现与区别 接口的代码 implicit...
B/S架构云端SaaS服务的医院云HIS系统源码,自主研发,支持电子病历4级
医院云HIS系统源码,自主研发,自主版权,电子病历病历4级 系统概述: 一款满足基层医院各类业务需要的云HIS系统。该系统能帮助基层医院完成日常各类业务,提供病患挂号支持、病患问诊、电子病历、开药发药、会员管理、统…...
看懂基本的电路原理图(入门)
文章目录 前言一、二极管二、电容三、接地一般符号四、晶体振荡器五、各种符号的含义六、查看原理图的顺序总结 前言 电子入门,怎么看原理图,各个图标都代表什么含义,今天好好来汇总一下。 就比如这个电路原理图来说,各个符号都…...
赫夫曼树基本数据结构
自编头文件: #ifndef HUFFMAN_H_INCLUDED #define HUFFMAN_H_INCLUDED#include<limits.h> #include<string.h> typedef struct {unsigned int weight;unsigned int parent,lchild,rchild; }HTNode,*HuffmanTree; typedef char** HuffmanCode;void Sele…...
10TB海量JSON数据从OSS迁移至MaxCompute
前提条件 开通MaxCompute。 在DataWorks上完成创建业务流程,本例使用DataWorks简单模式。详情请参见创建业务流程。 将JSON文件重命名为后缀为.txt的文件,并上传至OSS。本文中OSS Bucket地域为华东2(上海)。示例文件如下。 {&qu…...
LLM之RAG实战(九)| 高级RAG 03:多文档RAG体系结构
在RAG(检索和生成)这样的框架内管理和处理多个文档有很大的挑战。关键不仅在于提取相关内容,还在于选择包含用户查询所寻求的信息的适当文档。基于用户查询对齐的多粒度特性,需要动态选择文档,本文将介绍结构化层次检索…...
Windows电脑引导损坏?按照这个教程能修复
前言 Windows系统的引导一般情况下是不会坏的,小伙伴们可以不用担心。发布这个帖子是因为要给接下来的文章做点铺垫。 关注小白很久的小伙伴应该都知道,小白的文章都讲得比较细。而且文章与文章之间的关联度其实还是蛮高的。在文章中,你会遇…...
记Android字符串资源支持的参数类型
参数以%开头,后拼接对应的参数类型名称,如下所示: <string name"tips">Hello, %s! You have some new messages.</string> 类型名称如下所示: s字符串格式用于插入字符串值。例如,"Hel…...
Java实现树结构(为前端实现级联菜单或者是下拉菜单接口)
Java实现树结构(为前端实现级联菜单或者是下拉菜单接口) 我们常常会遇到这样一个问题,就是前端要实现的样式是一个级联菜单或者是下拉树,如图 这样的数据接口是怎么实现的呢,是什么样子的呢? 我们可以看看 …...
MySQL中常用的数据类型
整型 int 有符号范围: -2147483648 ~ 2147483647 int unsigned 无符号范围: 0 ~ 4294967295 int(5) zerofill 仅用于显示,当不满足5位时,按照左边补0,例如: 00002满足时,正常显示 tinyint[(m)] [unsigned] [zerofill] 有符号&a…...
HTML+CSS+JS制作三款雪花酷炫特效
🎀效果展示 🎀代码展示 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html...
[C#]使用ONNXRuntime部署一种用于边缘检测的轻量级密集卷积神经网络LDC
源码地址: github.com/xavysp/LDC LDC: Lightweight Dense CNN for Edge Detection算法介绍: 由于深度学习方法的快速发展,近年来,用于执行图像边缘检测的卷积神经网络(CNN)模型爆炸性地传播。但边缘检测…...
ZigBee案例笔记 - 无线点灯
文章目录 无线点灯实验概述工程关键字工程文件夹介绍Basic RF软件设计框图简单说明工程操作Basic RF启动流程Basic RF发送流程Basic RF接收流程 无线点灯案例无线点灯现象 无线点灯实验概述 ZigBee无线点灯实验(即Basic RF工程),由TI公司提供…...
Debezium日常分享系列之:向 Debezium 连接器发送信号
Debezium日常分享系列之:向 Debezium 连接器发送信号 一、概述二、激活源信号通道三、信令数据集合的结构四、创建信令数据集合五、激活kafka信号通道六、数据格式七、激活JMX信号通道八、自定义信令通道九、Debezium 核心模块依赖项十、部署自定义信令通道十一、信…...
《C#程序设计教程》总复习
一、单项选择题 1.short 类型的变量在内存中占据的位数是 ( )。 A. 8 B. 16 C. 32 D. 64 2.对千 int[ 4,5]型的数组 a, 数组元素 a[2,3] 存在数组第 ( )个位置上。 A. 11 B. 12 C. 14 D. 15 3.设 int 类型变量 x,y,z 的值分别是2、3、6 , 那么…...
为什么ChatGPT选择了SSE,而不是WebSocket?
我在探索ChatGPT的使用过程中,发现了一个有趣的现象:ChatGPT在实现流式返回的时候,选择了SSE(Server-Sent Events),而非WebSocket。 那么问题来了:为什么ChatGPT选择了SSE,而不是We…...
appium入门基础
介绍 appium支持在不同平台的UI自动化,如web,移动端,桌面端等。还支持使用java,python,js等语言编写自动化代码。主要用于自动化测试脚本,省去重复的手动操作。 Appium官网 安装 首先必须环境有Node.js用于安装Appium。 总体来…...
jsp介绍
JSP 一种编写动态网页的语言,可以嵌入java代码和html代码,其底层本质上为servlet,html部分为输出流,编译为java文件 例如 源jsp文件 <% page contentType"text/html; charsetutf-8" language"java" pageEncoding&…...
Debian安装k8s记录
Debian安装k8s记录 在master和node上安装kube安装master安装node遇到的问题汇总1、kubelet.service报错 failed to pull image "registry.k8s.io/pause:3.6"2、node重启后报错,failed: open /run/flannel/subnet.env: no such file or directory 在master…...
uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖
在前面的练习中,每个页面需要使用ref,onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入,需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...
【大模型RAG】Docker 一键部署 Milvus 完整攻略
本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装;只需暴露 19530(gRPC)与 9091(HTTP/WebUI)两个端口,即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...
Leetcode 3577. Count the Number of Computer Unlocking Permutations
Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接:3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯,要想要能够将所有的电脑解锁&#x…...
基于Uniapp开发HarmonyOS 5.0旅游应用技术实践
一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架,支持"一次开发,多端部署",可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务,为旅游应用带来…...
【生成模型】视频生成论文调研
工作清单 上游应用方向:控制、速度、时长、高动态、多主体驱动 类型工作基础模型WAN / WAN-VACE / HunyuanVideo控制条件轨迹控制ATI~镜头控制ReCamMaster~多主体驱动Phantom~音频驱动Let Them Talk: Audio-Driven Multi-Person Conversational Video Generation速…...
排序算法总结(C++)
目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指:同样大小的样本 **(同样大小的数据)**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...
【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看
文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...
从“安全密码”到测试体系:Gitee Test 赋能关键领域软件质量保障
关键领域软件测试的"安全密码":Gitee Test如何破解行业痛点 在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的"神经中枢"。从国防军工到能源电力,从金融交易到交通管控,这些关乎国计民生的关键领域…...
CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!
本文介绍了一种名为AnomalyAny的创新框架,该方法利用Stable Diffusion的强大生成能力,仅需单个正常样本和文本描述,即可生成逼真且多样化的异常样本,有效解决了视觉异常检测中异常样本稀缺的难题,为工业质检、医疗影像…...
AD学习(3)
1 PCB封装元素组成及简单的PCB封装创建 封装的组成部分: (1)PCB焊盘:表层的铜 ,top层的铜 (2)管脚序号:用来关联原理图中的管脚的序号,原理图的序号需要和PCB封装一一…...
