当前位置: 首页 > news >正文

堆的应用:堆排序和TOP-K问题

上次才讲完堆的相关问题:二叉树顺序结构与堆的概念及性质(c语言实现堆
那今天就接着来进行堆的主要两方面的应用:堆排序和TOP-K问题


文章目录

  • 1.堆排序
    • 1.1概念、思路及代码
    • 1.2改良代码(最初建立大堆用AdjustDow)
  • 2. TOP-K问题


1.堆排序

1.1概念、思路及代码

堆排序即利用堆的思想来进行排序,总共分为两个步骤:

  1. 建立堆
  • 升序:建立大堆
  • 降序:建立小堆
  1. 利用堆删除思想来进行排序:堆顶元素是当前堆中的最大值(大堆)或最小值(小堆),将堆顶元素与堆中最后一个元素交换,然后将剩余元素重新调整成堆,再取出堆顶元素。重复上述步骤,直到所有元素都被取出,即完成了排序
#define _CRT_SECURE_NO_WARNINGS 1
#include"Heap.h"void Swap(HPDataType* p1, HPDataType* p2)
{HPDataType tmp = *p1;*p1 = *p2;*p2 = tmp;
}void AdjustUp(HPDataType* a, int child)
{int father = (child - 1) / 2;while (child > 0){if (a[child] > a[father]){Swap(&a[child], &a[father]);//更新下标child = father;father = (father - 1) / 2;}else{break;//一旦符合小堆了,就直接退出}}
}void AdjustDown(HPDataType* a, int n, int father)
{int child = father * 2 + 1;//假设左孩子大while (child < n){if (child + 1 < n && a[child] < a[child + 1]){child++;}if (a[child] > a[father]){Swap(&a[child], &a[father]);father = child;child = father * 2 + 1;}else{break;}}
}void HeapSort(int* arr, int n)//升序
{//先建大堆for (int i = 0; i < n; i++){AdjustUp(arr, i);}int a = n - 1;while (a > 0){//此时最大的是堆顶,堆顶跟最后一个交换Swap(&arr[0], &arr[a]);//现在最大的已经在最后了,不考虑它,把新塔顶降下来,重新编程大堆AdjustDown(arr, a, 0);a--;}}int main()
{int arr[]= { 4,6,2,1,5,8,2,9 };for (int i = 0; i < sizeof(arr) / sizeof(int); i++){printf("%d ", arr[i]);}printf("\n");HeapSort(arr, sizeof(arr) / sizeof(int));for (int i = 0; i < sizeof(arr) / sizeof(int); i++){printf("%d ", arr[i]);}
}

结果:

请添加图片描述

1.2改良代码(最初建立大堆用AdjustDow)

仅仅该那一部分:

void HeapSort(int* arr, int n)//升序
{//先建大堆//for (int i = 0; i < n; i++)//{//	AdjustUp(arr, i);//}for (int i = (n - 1 - 1) / 2; i >= 0; i--){AdjustDown(arr, n, i);}int a = n - 1;while (a > 0){//此时最大的是堆顶,堆顶跟最后一个交换Swap(&arr[0], &arr[a]);//现在最大的已经在最后了,不考虑它,把新塔顶降下来,重新编程大堆AdjustDown(arr, a, 0);a--;}}

对于一个具有n个节点的完全二叉树来说,最后一个非叶子节点的下标是(n-1-1)/2,也就是说,从最后一个非叶子节点开始,依次向上调整每个节点,就可以建立一个大堆

相比于向上调整,向下调整的好处:时间复杂度低

  • 向下调整的时间复杂度是O(n),而向上调整的时间复杂度是O(nlogn)

建堆的时间复杂度为 O(n),排序过程的时间复杂度为 O(n log n)(建堆的时间复杂度为 O(n),而对堆进行排序的过程中,需要进行 n-1 次堆调整操作,每次堆调整的时间复杂度为 O(log n)。因此,排序过程的时间复杂度为 O(n log n))


2. TOP-K问题

TOP-K问题:求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大

对于Top-K问题,能想到的最简单直接的方式就是排序,然后直接取。 但是:如果数据量非常大,排序就不 太可取了,最佳的方式就是用堆来解决,基本思路如下:

  1. 用数据集合中前K个元素来建堆
    • 要找前k个最大的元素,则建小堆
    • 要找前k个最小的元素,则建大堆
  1. 用剩余的元素依次与堆顶元素来比较,不满足则替换堆顶元素
    • 要找前k个最大的元素:但凡剩余的有比小堆堆顶大的就进入到堆里面,然后向下沉;如果建立大堆有可能一个都进不来。
    • 找前k个最小的也同理
void CreateData()//用来创建有随机数的文件的进行检测
{int N = 1000;srand(time(0));FILE* f = fopen("data.txt", "w");for (int i = 0; i < N; i++){int a = (rand()) % 10000;fprintf(f,"%d\n", a);}fclose(f);}void PrintTopK(int k)//前k个大的
{//先读文件FILE* fout = fopen("data.txt", "r");if (fout == NULL){perror("fopen file");return -1;}int* a = (int*)malloc(sizeof(int) * k);for (int i = 0; i < k; i++)//建立元素k的小堆{fscanf(fout, "%d", &a[i]);//把文件里的前k个数字写入数组里AdjustUp(a, k);}//如果有比堆顶大的,就进来int n = 0;while (fscanf(fout, "%d", &n) != EOF)//读到文件读完就停止{if (n > a[0]){a[0] = n;AdjustDown(a, k, 0);}}for (int i = 0; i < k; i++){printf("%d ", a[i]);}printf("\n");fclose(fout);
}int main()
{PrintTopK(5);return 0;
}

结果如下:

请添加图片描述


那这次堆的两大应用就先到这里啦,到此二叉树顺序结构部分的知识也已经分享完毕了。感谢大家的支持,希望能帮助到大家!!!

相关文章:

堆的应用:堆排序和TOP-K问题

上次才讲完堆的相关问题&#xff1a;二叉树顺序结构与堆的概念及性质&#xff08;c语言实现堆 那今天就接着来进行堆的主要两方面的应用&#xff1a;堆排序和TOP-K问题 文章目录 1.堆排序1.1概念、思路及代码1.2改良代码&#xff08;最初建立大堆用AdjustDow&#xff09; 2. TO…...

element表格排序功能

官方展示 个人项目 可以分别对每一项数据进行筛选 注&#xff1a;筛选的数据不能是字符串类型必须是数字类型&#xff0c;否则筛选会乱排序 html <el-table :data"tableData" border height"600" style"width: 100%"><el-table-co…...

HNU-Java程序设计基础训练-2023

1.DNA序列&#xff08;Java&#xff09; 【问题描述】 一个DNA序列由A/C/G/T四个字母的排列组合组成。G和C的比例&#xff08;定义为GC-Ratio&#xff09;是序列中G和C两个字母的总的出现次数除以总的字母数目&#xff08;也就是序列长度&#xff09;。在基因工程中&#xf…...

数据库和数据库编程

数据库、数据表、表数据操作以及数据库编程相关的知识点 1. 数据库的概念&#xff1a; 数据库是用于存储和组织数据的系统。数据库管理系统(DBMS)是管理数据库的软件&#xff0c;提供对数据的访问、查询和维护。关系型数据库是一种通过表格结构来组织和管理数据的数据库。 2…...

爬虫基础一(持续更新)

爬虫概念&#xff1a; 通过编写程序&#xff0c;模拟浏览器上网&#xff0c;然后让其去互联网上抓取数据的过程 分类&#xff1a; 1&#xff0c;通用爬虫&#xff1a;抓取一整张页面数据 2&#xff0c;聚焦爬虫&#xff1a;抓取页面中的局部内容 3&#xff0c;增量式爬虫&…...

右键菜单“以notepad++打开”,在windows文件管理器中

notepad 添加到文件管理器的右键菜单中 找到安装包&#xff0c;重新安装一般即可。 这里有最新版&#xff1a;地址 密码:f0f1 方法 在安装的时候勾选 “Context Menu Entry” 即可 Notepad的右击打开文件功能 默认已勾选 其作用是添加右键快捷键。即&#xff0c;对于任何…...

JSON.parseObject强制将自动转化的Intage型设置为Long型

通过Redis或Caffeine存储入json型String&#xff0c;通过JSON.parseObject自动类型转化之后&#xff0c;数值会优先转为Intage&#xff0c;如果存入的字符值大于Intage最大值&#xff0c;会自动转为Long型&#xff1b; 需求是&#xff1a;实要取出时数值类型值为Long&#xff1…...

Redis的集群模式:主从 哨兵 分片集群

基于Redis集群解决单机Redis存在的问题&#xff0c;在之前学Redis一直都是单节点部署 单机或单节点Redis存在的四大问题&#xff1a; 数据丢失问题&#xff1a;Redis是内存存储&#xff0c;服务重启可能会丢失数据 > 利用Redis数据持久化的功能将数据写入磁盘并发能力问题…...

Note: An Interesting Festival

An Interesting Festival 一个有趣的节日。 festival The Agricultural Feast takes place after the independence Day. 农业盛会在独立日后举行 takes place independence feast agricultural It is not a worldwide celebration. 它不是一个全球的庆典。 worldwide ce…...

iview表格固定列横向滚动条无法拖动问题

文章目录 问题解决办法 问题 在使用iview的表格组件时&#xff0c;遇到了设置固定列表格后滚动条无法拖动的问题&#xff0c;当对表格列进行固定后&#xff0c;底部的横向滚动条就无法拖动了&#xff0c;主要的问题就是固定区域盖住了横向滚动条。 解决办法 在组件内直接加下…...

Python序列之集合

系列文章目录 Python序列之列表Python序列之元组Python序列之字典Python序列之集合&#xff08;本篇文章&#xff09; Python序列之集合 系列文章目录前言一、集合是什么&#xff1f;二、集合的操作1.集合的创建&#xff08;1&#xff09;使用{}创建&#xff08;2&#xff09;…...

智慧园区物联综合管理平台之架构简述

总体架构 系统总体划分为物联感知系统层、 核心平台层、 综合运营服务平台和展示层四部分。 物联感知系统层 物联感知系统主要是支撑园区智能化运行的各子系统, 包括门禁系统、 视频监控系统、 车辆管理系统等。 核心平台层 核心平台层包括: 园区物联综合管理平台和园区…...

国科大图像处理2023速通期末——汇总2017-2019

国科大2023.12.28图像处理0854期末重点 图像处理 王伟强 作业 课件 资料 一、填空 一个阴极射线管它的输入与输出满足 s r 2 sr^{2} sr2&#xff0c;这将使得显示系统产生比希望的效果更暗的图像&#xff0c;此时伽马校正通常在信号进入显示器前被进行预处理&#xff0c;令p…...

oracle 9i10g编程艺术-读书笔记2

配置Statspack 安装Statspack需要用internal身份登陆&#xff0c;或者拥有SYSDBA(connect / as sysdba)权限的用户登陆。需要在本地安装或者通过telnet登陆到服务器。 select instance_name,host_name,version,startup_time from v$instance;检查数据文件路径及磁盘空间&…...

PACC:数据中心网络的主动 CNP 生成方案

PACC&#xff1a;数据中心网络的主动 CNP 生成方案 文章目录 PACC&#xff1a;数据中心网络的主动 CNP 生成方案PACC算法CNP数据结构PACC参数仿真结果参考文献 PACC算法 CNP数据结构 PACC参数 仿真结果 PACC Hadoop Load0.2 的情况&#xff1a; PACC Hadoop Load0.4 的情况&a…...

我最喜欢的趣味几何书-读书笔记

我最喜欢的趣味几何书-读书笔记 1、利用阴影的长度来测量 公元前6世纪&#xff0c;古希腊哲学家泰勒思为了测量金字塔&#xff0c;想到了这样的方法&#xff1a;选择了一个特殊的时间&#xff0c;在那个时间&#xff0c;他自身的影子长度刚好跟他的身高相等。此时&#xff0c…...

Stable Diffusion模型概述

Stable Diffusion 1. Stable Diffusion能做什么&#xff1f;2. 扩散模型2.1 正向扩散2.2 反向扩散 3. 训练如何进行3.1 反向扩散3.2 Stable Diffusion模型3.3 潜在扩散模型3.4 变分自动编码器3.5 图像分辨率3.6 图像放大 4. 为什么潜在空间是可能的&#xff1f;4.1 在潜在空间中…...

二叉树详解(深度优先遍历、前序,中序,后序、广度优先遍历、二叉树所有节点的个数、叶节点的个数)

目录 一、树概念及结构(了解) 1.1树的概念 1.2树的表示 二、二叉树概念及结构 2.1概念 2.2现实中的二叉树&#xff1a; 2.3数据结构中的二叉树&#xff1a; 2.4特殊的二叉树&#xff1a; 2.5 二叉树的存储结构 2.51 顺序存储&#xff1a; 2.5.2 链式存储&…...

C++日期类的实现

前言&#xff1a;在类和对象比较熟悉的情况下&#xff0c;我们我们就可以开始制作日期表了&#xff0c;实现日期类所包含的知识点有构造函数&#xff0c;析构函数&#xff0c;函数重载&#xff0c;拷贝构造函数&#xff0c;运算符重载&#xff0c;const成员函数 1.日期类的加减…...

B+树的插入删除

操作 插入 case2的原理,非叶子节点永远和最右边的最左边的节点的值相等。 case3:的基本原理 非叶子节点都是索引节点 底层的数据分裂之后 相当于向上方插入一个新的索引(你可以认为非叶子节点都是索引),反正第二层插入160 都要分裂,然后也需要再插入(因为索引部分不需要重…...

后进先出(LIFO)详解

LIFO 是 Last In, First Out 的缩写&#xff0c;中文译为后进先出。这是一种数据结构的工作原则&#xff0c;类似于一摞盘子或一叠书本&#xff1a; 最后放进去的元素最先出来 -想象往筒状容器里放盘子&#xff1a; &#xff08;1&#xff09;你放进的最后一个盘子&#xff08…...

关于nvm与node.js

1 安装nvm 安装过程中手动修改 nvm的安装路径&#xff0c; 以及修改 通过nvm安装node后正在使用的node的存放目录【这句话可能难以理解&#xff0c;但接着往下看你就了然了】 2 修改nvm中settings.txt文件配置 nvm安装成功后&#xff0c;通常在该文件中会出现以下配置&…...

Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理

引言 Bitmap&#xff08;位图&#xff09;是Android应用内存占用的“头号杀手”。一张1080P&#xff08;1920x1080&#xff09;的图片以ARGB_8888格式加载时&#xff0c;内存占用高达8MB&#xff08;192010804字节&#xff09;。据统计&#xff0c;超过60%的应用OOM崩溃与Bitm…...

Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信

文章目录 Linux C语言网络编程详细入门教程&#xff1a;如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket&#xff08;服务端和客户端都要&#xff09;2. 绑定本地地址和端口&#x…...

安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)

船舶制造装配管理现状&#xff1a;装配工作依赖人工经验&#xff0c;装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书&#xff0c;但在实际执行中&#xff0c;工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...

短视频矩阵系统文案创作功能开发实践,定制化开发

在短视频行业迅猛发展的当下&#xff0c;企业和个人创作者为了扩大影响力、提升传播效果&#xff0c;纷纷采用短视频矩阵运营策略&#xff0c;同时管理多个平台、多个账号的内容发布。然而&#xff0c;频繁的文案创作需求让运营者疲于应对&#xff0c;如何高效产出高质量文案成…...

基于Java+MySQL实现(GUI)客户管理系统

客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息&#xff0c;对客户进行统一管理&#xff0c;可以把所有客户信息录入系统&#xff0c;进行维护和统计功能。可通过文件的方式保存相关录入数据&#xff0c;对…...

打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用

一、方案背景​ 在现代生产与生活场景中&#xff0c;如工厂高危作业区、医院手术室、公共场景等&#xff0c;人员违规打手机的行为潜藏着巨大风险。传统依靠人工巡查的监管方式&#xff0c;存在效率低、覆盖面不足、判断主观性强等问题&#xff0c;难以满足对人员打手机行为精…...

C语言中提供的第三方库之哈希表实现

一. 简介 前面一篇文章简单学习了C语言中第三方库&#xff08;uthash库&#xff09;提供对哈希表的操作&#xff0c;文章如下&#xff1a; C语言中提供的第三方库uthash常用接口-CSDN博客 本文简单学习一下第三方库 uthash库对哈希表的操作。 二. uthash库哈希表操作示例 u…...

华为OD机试-最短木板长度-二分法(A卷,100分)

此题是一个最大化最小值的典型例题&#xff0c; 因为搜索范围是有界的&#xff0c;上界最大木板长度补充的全部木料长度&#xff0c;下界最小木板长度&#xff1b; 即left0,right10^6; 我们可以设置一个候选值x(mid)&#xff0c;将木板的长度全部都补充到x&#xff0c;如果成功…...