当前位置: 首页 > news >正文

[Redis实战]分布式锁

四、分布式锁

4.1 基本原理和实现方式对比

分布式锁:满足分布式系统或集群模式下多进程可见并且互斥的锁。

分布式锁的核心思想就是让大家都使用同一把锁,只要大家使用的是同一把锁,那么我们就能锁住线程,不让线程进行,让程序串行执行,这就是分布式锁的核心思路。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

分布式锁满足的条件

可见性:多个线程都能看到相同的结果。注意:这个地方说的可见性并不是并发编程中指的内存可见性,只是说多个进程之间都能感知到变化的意思。

互斥:互斥是分布式锁最基本的条件,使得程序串行执行。

高可用:程序不易崩溃,时时刻刻都保证较高的可用性。

高性能:由于加锁本身就让性能降低,所以对于分布式锁本身需要它有较高的加锁性能和释放锁性能。

安全性:安全是程序中必不可少的一环。

常见的三种分布式锁

  • MySQL:mysql本身就带有锁机制,但是由于mysql性能本身一般,所以采用分布式锁的情况下,其实使用mysql作为分布式锁比较少见。
  • Redis:redis作为分布式锁是非常常见的一种使用方式,现在企业级开发中基本都使用redis或zookeeper作为分布式锁,利用setnx这个方法,如果插入key成功,则表示获得了锁,如果有人插入成功,其他人插入失败则表示无法获得到锁,利用这套逻辑来实现分布式锁。
  • zookeeper:zookeeper也是企业级开发中较好的一个实现分布式锁的方案。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

4.2 Redis分布式锁的实现核心思路

实现分布式锁时需要实现的两个基本方法:

  • 获取锁:

    • 互斥:确保只能有一个线程获取锁
    • 非阻塞:尝试一次,成功返回true,失败返回false

    外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

  • 释放锁:

    • 手动释放

    • 超时释放:获取锁时添加一个超时时间

      外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

核心思路:

我们利用redis的setNx方法,当有多个线程进入时,我们就利用该方法,第一个线程进入时,redis中就有这个key了,返回了1,如果结果是1表示他抢到了锁,那么他去执行业务,然后再删除锁,退出锁逻辑,如果没有抢到锁,等待一定时间后重试即可

4.3 实现分布式锁版本一

锁的基本接口

public interface ILock {/*** 尝试获取锁** @param timeoutSec 锁持有的超时时间,过期后自动释放* @return true代表获取锁成功;false代表获取锁失败*/boolean tryLock(long timeoutSec);/*** 释放锁*/void unlock();
}

SimpleRedisLock

利用setnx方法进行加锁,同时增加过期时间,防止死锁,此方法可以保证加锁和增加过期时间,具有原子性

public class SimpleRedisLock implements ILock {private String name;private StringRedisTemplate stringRedisTemplate;public SimpleRedisLock(String name, StringRedisTemplate stringRedisTemplate) {this.name = name;this.stringRedisTemplate = stringRedisTemplate;}private static final String KEY_PREFIX = "lock:";@Overridepublic boolean tryLock(long timeoutSec) {//获取线程标识long threadId = Thread.currentThread().getId();//获取锁Boolean success = stringRedisTemplate.opsForValue().setIfAbsent(KEY_PREFIX + name, threadId + "", timeoutSec, TimeUnit.SECONDS);return Boolean.TRUE.equals(success);}@Overridepublic void unlock() {//释放锁stringRedisTemplate.delete(KEY_PREFIX+name);}
}

修改seckillVoucher业务代码

@Autowired
private StringRedisTemplate stringRedisTemplate;public Result seckillVoucher(Long voucherId) {//1.查询优惠券信息SeckillVoucher voucher = seckillVoucherService.getById(voucherId);//2.判断秒杀是否开始if (voucher.getBeginTime().isAfter(LocalDateTime.now())) {return Result.fail("秒杀尚未开始!");}//3.判断秒杀是否已经结束if (voucher.getEndTime().isBefore(LocalDateTime.now())) {return Result.fail("秒杀已经结束!");}//4.判断库存是否充足if (voucher.getStock() < 1) {return Result.fail("库存不足!");}Long userId = UserHolder.getUser().getId();//创建锁对象SimpleRedisLock lock = new SimpleRedisLock("order:" + userId, stringRedisTemplate);//获取锁boolean isLock = lock.tryLock(1200);//判断释放获取锁成功if (!isLock) {//获取锁失败,返回错误或重试return Result.fail("不允许重复下单!");}try {//获取代理对象(事务)IVoucherOrderService proxy = (IVoucherOrderService) AopContext.currentProxy();return proxy.createVoucherOrder(voucherId);} finally {//释放锁lock.unlock();}
}

4.4 Redis分布式锁误删情况说明

逻辑说明:

持有锁的线程在锁的内部出现了阻塞,导致它的锁超时自动释放,线程2来尝试获得锁,拿到了这把锁,然后线程2在持有锁执行过程中,线程1继续执行,而线程1执行过程中,走到了删除锁逻辑,此时就会把本应该属于线程2的锁进行删除。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

解决方案:在每个线程释放锁的时候,去判断一下当前这把锁是否属于自己。假设还是上面的情况,线程1卡顿,锁超时自动释放,线程2进入到锁的内部执行逻辑,此时线程1反映过来,然后删除锁,但是线程1一看当前这把锁不是属于自己,于是不进行删除锁逻辑,当线程2走到删除锁逻辑时,如果没有卡过自动释放锁的时间点,则判断当前这把锁是属于自己的,于是删除这把锁。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

4.5 解决Redis分布式锁误删问题

需求:修改之前的分布式锁实现,满足:在获取锁时存入线程标识(可以用UUID表示),在释放锁时先获得锁的线程标示,判断是否与当前线程标识一致。

  • 如果一致则释放锁
  • 如果不一致则不释放锁

核心逻辑:在存入锁时,放入自己线程的标识,在删除锁时,判断当前这把锁的标识是不是自己存入的,如果是,则进行删除,如果不是,则不进行删除。

private static final String ID_PREFIX = UUID.randomUUID().toString(true) + "-";@Override
public boolean tryLock(long timeoutSec) {//获取线程标识String threadId = ID_PREFIX + Thread.currentThread().getId();//获取锁Boolean success = stringRedisTemplate.opsForValue().setIfAbsent(KEY_PREFIX + name, threadId, timeoutSec, TimeUnit.SECONDS);return Boolean.TRUE.equals(success);
}@Override
public void unlock() {//获取线程标识String threadId = ID_PREFIX + Thread.currentThread().getId();//获取锁中的标识String id = stringRedisTemplate.opsForValue().get(KEY_PREFIX + name);//判断标识是否一致if (threadId.equals(id)) {//释放锁stringRedisTemplate.delete(KEY_PREFIX + name);}
}

有关代码实操说明:

在我们修改完此处代码后,我们重启工程,然后启动两个线程,第一个线程持有锁后,手动释放锁,第二个线程 此时进入到锁内部,再放行第一个线程,此时第一个线程由于锁的value值并非是自己,所以不能释放锁,也就无法删除别人的锁,此时第二个线程能够正确释放锁,通过这个案例初步说明我们解决了锁误删的问题。

4.6 分布式锁的原子性问题

更为极端的误删逻辑说明:

线程1现在持有锁之后,在执行业务逻辑过程中,它正准备删除锁,而且已经走到了条件判断的过程中,比如它已经拿到了当前这把锁确实是属于他自己的,正准备删除锁,但是此时它的锁到期了,那么此时线程2进来,但是线程1他会接着往后执行,当线程1执行到删除锁那行代码时,相当于条件判断并没有起到作用,这就是删锁时的原子性问题,之所以有这个问题,是因为线程1的拿到锁,比较锁,删除锁实际上不是一个原子性的,我们要防止刚才的情况发生。

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

4.7 Lua脚本解决多条命令原子性问题

Redis提供了Lua脚本功能,在一个脚本中编写多条Redis命令,确保多条命令执行时的原子性。

Lua是一种编程语言,它的基本语法大家可以参考网站:https://www.runoob.com/lua/lua-tutorial.html,这里重点介绍Redis提供的调用函数,我们可以使用Lua去操作redis,又能保证它的原子性,这样就可以实现拿锁、比较锁和删除锁是一个原子性动作了。

这里重点介绍Redis提供的调用函数,语法如下:

redis.call('命令名称','key','其他参数',...)

例如,我们要执行set name jack,则脚本是这样的:

# 执行 set name jack
redis.call('set','name','jack')

例如,我们要先执行set name Rose,再执行get name,则脚本如下:

# 先执行 set name jack
redis.call('set','name','Rose')
# 再执行 get name
local name=redis.call('get','name')
# 返回
return name

写好脚本以后,需要用Redis命令来调用脚本,调用脚本的常见命令如下:

例如,我们要执行 redis.call(‘set’, ‘name’, ‘jack’) 这个脚本,语法如下:

#调用脚本
EVAL "return redis.call('set','name','jack')" 0

如果脚本中的key、value不想写死,可以作为参数传递。key类型参数会放入KEYS数组,其它参数会放入ARGV数组,在脚本中可以从KEYS和ARGV数组获取这些参数:

#调用脚本
EVAL "return redis.call('set',KEYS[1],ARGV[1])" 1 name Rose

使用Lua脚本实现释放锁的流程

--这里的KEYS[1]就是锁的key,这里的ARGV[1]就是当前线程标识
--获取锁中的标识,判断是否与当前线程标识一致
if(redis.call('GET',KEYS[1])==ARGV[1]) then-- 一致,则删除锁return redis.call('DEL',KEYS[1])
end
--不一致,则直接返回
return 0

4.8 利用Java代码调用Lua脚本改造分布式锁

在RedisTemplate中,可以利用execute方法去执行lua脚本,参数对应关系如图所示

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

private static final DefaultRedisScript<Long> UNLOCK_SCRIPT;static {UNLOCK_SCRIPT = new DefaultRedisScript<>();UNLOCK_SCRIPT.setLocation(new ClassPathResource("unlock.lua"));UNLOCK_SCRIPT.setResultType(Long.class);}public void unlock() {// 调用lua脚本stringRedisTemplate.execute(UNLOCK_SCRIPT,Collections.singletonList(KEY_PREFIX + name),ID_PREFIX + Thread.currentThread().getId());
}

经过以上改造,我们就可以实现拿锁、比较锁、删除锁的原子性操作了。

测试逻辑

第一个线程进来,得到了锁,手动删除锁,模拟锁超时了,其他线程会来抢锁,当第一个线程利用lua删除锁时,lua能保证他不能删除别人的锁,第二个线程删除锁时,利用lua同样可以保证不会删除别人的锁,同时还能保证原子性。

4.9 总结

基于Redis的分布式锁实现思路:

  • 利用set nx ex 获取锁,并设置过期时间,保存线程标识
  • 释放锁时先判断标识是否与自己一致,一致则删除锁
    • 特性:
      • 利用set nx满足互斥性
      • 利用set ex保证故障时锁依然能释放,避免死锁,提高安全性
      • 利用Redis集群保证高可用和高并发特性

一路走来,利用添加过期时间,防止死锁问题的发生,但是有了过期时间之后,可能出现误删别人锁的问题,这个问题开始是利用删之前拿锁、比较锁、删除锁这个逻辑来解决的,也就是删之前判断这把锁是否是属于自己的,但是现在还有一个原子性问题,我们无法保证拿锁、比较锁和删除锁是一个原子性动作,最后通过lua表达式解决了这个问题。

相关文章:

[Redis实战]分布式锁

四、分布式锁 4.1 基本原理和实现方式对比 分布式锁&#xff1a;满足分布式系统或集群模式下多进程可见并且互斥的锁。 分布式锁的核心思想就是让大家都使用同一把锁&#xff0c;只要大家使用的是同一把锁&#xff0c;那么我们就能锁住线程&#xff0c;不让线程进行&#xf…...

SpingBoot的项目实战--模拟电商【2.登录】

&#x1f973;&#x1f973;Welcome Huihuis Code World ! !&#x1f973;&#x1f973; 接下来看看由辉辉所写的关于SpringBoot电商项目的相关操作吧 目录 &#x1f973;&#x1f973;Welcome Huihuis Code World ! !&#x1f973;&#x1f973; 一.功能需求 二.代码编写 …...

http——https实现指南

第一部分&#xff1a;HTTPS安全证书简介 什么是HTTPS安全证书&#xff1f; 在网络通信中&#xff0c;HTTPS安全证书是一种由可信任的证书颁发机构&#xff08;CA&#xff09;签发的数字证书&#xff0c;用于保障网站与用户之间的数据传输安全。通过加密和身份验证&#xff0c…...

ROS仿真R2机器人之安装运行及MoveIt的介绍

R2(Robonaut 2)是NASA美国宇航局与GM通用联合推出的宇航人形机器人&#xff0c;能在国际空间站使用&#xff0c;可想而知其价格是非常昂贵&#xff0c;几百万美刀吧&#xff0c;还好NASA发布了一个R2机器人的Gazebo模型&#xff0c;使用模型就不需要花钱了&#xff0c;由于我们…...

【linux 多线程并发】线程属性设置与查看,绑定CPU,线程分离与可连接,避够多线程下的内存泄漏

线程属性设置 ​专栏内容&#xff1a; 参天引擎内核架构 本专栏一起来聊聊参天引擎内核架构&#xff0c;以及如何实现多机的数据库节点的多读多写&#xff0c;与传统主备&#xff0c;MPP的区别&#xff0c;技术难点的分析&#xff0c;数据元数据同步&#xff0c;多主节点的情况…...

70.乐理基础-打拍子-三连音

上一个内容&#xff1a;69.乐理基础-打拍子-大切分与变体-CSDN博客 62-66是总拍数为一拍的节奏型&#xff0c;一共有七个&#xff0c;68-69是两拍的节奏型。 三连音说明&#xff1a; 1.三连音的总拍数可以是一拍、两拍、四拍。。。。 2.打拍子比较难&#xff0c;或许需要用V字…...

100天精通Python(实用脚本篇)——第111天:批量将PDF转Word文档(附上脚本代码)

文章目录 专栏导读1. 将PDF转Word文档需求2. 模块安装3. 模块介绍4. 注意事项5. 完整代码实现6. 运行结果书籍推荐 专栏导读 &#x1f525;&#x1f525;本文已收录于《100天精通Python从入门到就业》&#xff1a;本专栏专门针对零基础和需要进阶提升的同学所准备的一套完整教…...

如何在 NAS 上安装 ONLYOFFICE 文档?

文章作者&#xff1a;ajun 导览 ONLYOFFICE 文档 是一款开源办公套件&#xff0c;其是包含文本文档、电子表格、演示文稿、表单、PDF 查看器和转换工具的协作性编辑工具。它高度兼容微软 Office 格式&#xff0c;包括 .docx、.xlsx 、.pptx 、pdf等文件格式&#xff0c;并支持…...

Baumer工业相机堡盟工业相机如何通过NEOAPI SDK设置相机的图像剪切(ROI)功能(C++)

Baumer工业相机堡盟工业相机如何通过NEOAPI SDK设置相机的图像剪切&#xff08;ROI&#xff09;功能&#xff08;C&#xff09; Baumer工业相机Baumer工业相机的图像剪切&#xff08;ROI&#xff09;功能的技术背景CameraExplorer如何使用图像剪切&#xff08;ROI&#xff09;功…...

从 WasmEdge 运行环境读写 Rust Wasm 应用的时序数据

WebAssembly (Wasm) 正在成为一个广受欢迎的编译目标&#xff0c;帮助开发者构建可迁移平台的应用。最近 Greptime 和 WasmEdge 协作&#xff0c;支持了在 WasmEdge 平台上的 Wasm 应用通过 MySQL 协议读写 GreptimeDB 中的时序数据。 什么是 WebAssembly WebAssembly 是一种…...

算法训练营Day34(贪心算法)

1005.K次取反后最大化的数组和 1005. K 次取反后最大化的数组和 - 力扣&#xff08;LeetCode&#xff09; 秒了 class Solution {public int largestSumAfterKNegations(int[] nums, int k) {Arrays.sort(nums);// -4 -3 -2 -1 5//-2 -2 0 2 5int last -1;for(int i 0;i<…...

uniapp:全局消息是推送,实现app在线更新,WebSocket,apk上传

全局消息是推送&#xff0c;实现app在线更新&#xff0c;WebSocket 1.在main.js中定义全局的WebSocket2.java后端建立和发送WebSocket3.通知所有用户更新 背景&#xff1a; 开发人员开发后app后打包成.apk文件&#xff0c;上传后通知厂区在线用户更新app。 那么没在线的怎么办&…...

ARM1.2作业

实现数码管不同位显示不同的数字 spi.h #ifndef __SPI_H__ #define __SPI_H__ #include "stm32mp1xx_gpio.h" #include "stm32mp1xx_rcc.h"//MOSI对应的引脚输入高低电平的信号PE14 #define MOSI_OUTPUT_H() do{GPIOE->ODR | (0x1 << 14);}whi…...

【算法专题】递归算法

递归 递归1. 汉诺塔问题2. 合并两个有序链表3. 反转链表4. 两两交换链表中的节点5. Pow(x, n) --- 快速幂 递归 在解决⼀个规模为 n 的问题时&#xff0c;如果满足以下条件&#xff0c;我们可以使用递归来解决&#xff1a; 问题可以被划分为规模更小的子问题&#xff0c;并且…...

不停止业务的情况下优化 Elasticsearch Reindex

在使用 Elasticsearch 时,我们总有需要修改索引映射的时候,这时我们只能进行 _reindex。事实上,这是一个相当昂贵的操作,因为根据数据量和分片数量,完整复制一个索引可能需要几个小时。 花费的时间不是大问题,但更严重的是,它会影响生产环境的性能甚至功能。 相信大家…...

PB 按Excel动态创建对应字段

/* > Function: w_cwjk_xhyy.wf_dw_init >-------------------------------------------------------------------- > 描述: 按excel表格列名,创建对应字段,用于部分接口对应字段导出文件 >-------------------------------------------------------------------- …...

数据结构——红黑树 and B-树

红黑树 根据平衡条件第4、5两点 最短路径&#xff0c;都是黑色 最长路径&#xff0c;红黑相间 最长是最短的两倍 B-树...

Android中线程间的通信-Handler

Handler机制在Android中主要用于线程间的通信&#xff0c;特别是处理从子线程向主线程&#xff08;UI线程&#xff09;传递消息和更新界面。 Handler中的四个关键对象及其作用&#xff1a; Message&#xff1a; Message 是在线程间传递的数据载体&#xff0c;它包含了需要处理…...

Spring Boot Admin健康检查引起的Spring Boot服务假死

问题现象 最近在spring boot项目中引入了 spring-boot-starter-actuator 后&#xff0c;测试环境开始出现服务假死的现象&#xff0c; 且这个问题十分怪异&#xff0c;只在多个微服务中的简称A的这个服务中出现&#xff0c;其他服务都没有出现这个问题&#xff0c; 之所以说…...

java企业人事信息管理系统Myeclipse开发mysql数据库web结构java编程计算机网页项目

一、源码特点 java Web企业人事信息管理系统是一套完善的java web信息管理系统&#xff0c;对理解JSP java编程开发语言有帮助&#xff0c;系统具有完整的源代码和数据库&#xff0c;系统主要采用B/S模式开发。开发环境 为TOMCAT7.0,Myeclipse8.5开发&#xff0c;数据库为M…...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录

ASP.NET Core 是一个跨平台的开源框架&#xff0c;用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录&#xff0c;以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...

基础测试工具使用经验

背景 vtune&#xff0c;perf, nsight system等基础测试工具&#xff0c;都是用过的&#xff0c;但是没有记录&#xff0c;都逐渐忘了。所以写这篇博客总结记录一下&#xff0c;只要以后发现新的用法&#xff0c;就记得来编辑补充一下 perf 比较基础的用法&#xff1a; 先改这…...

python执行测试用例,allure报乱码且未成功生成报告

allure执行测试用例时显示乱码&#xff1a;‘allure’ &#xfffd;&#xfffd;&#xfffd;&#xfffd;&#xfffd;ڲ&#xfffd;&#xfffd;&#xfffd;&#xfffd;ⲿ&#xfffd;&#xfffd;&#xfffd;Ҳ&#xfffd;&#xfffd;&#xfffd;ǿ&#xfffd;&am…...

python报错No module named ‘tensorflow.keras‘

是由于不同版本的tensorflow下的keras所在的路径不同&#xff0c;结合所安装的tensorflow的目录结构修改from语句即可。 原语句&#xff1a; from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后&#xff1a; from tensorflow.python.keras.lay…...

GitHub 趋势日报 (2025年06月06日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...

jmeter聚合报告中参数详解

sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample&#xff08;样本数&#xff09; 表示测试中发送的请求数量&#xff0c;即测试执行了多少次请求。 单位&#xff0c;以个或者次数表示。 示例&#xff1a;…...

libfmt: 现代C++的格式化工具库介绍与酷炫功能

libfmt: 现代C的格式化工具库介绍与酷炫功能 libfmt 是一个开源的C格式化库&#xff0c;提供了高效、安全的文本格式化功能&#xff0c;是C20中引入的std::format的基础实现。它比传统的printf和iostream更安全、更灵活、性能更好。 基本介绍 主要特点 类型安全&#xff1a…...

Canal环境搭建并实现和ES数据同步

作者&#xff1a;田超凡 日期&#xff1a;2025年6月7日 Canal安装&#xff0c;启动端口11111、8082&#xff1a; 安装canal-deployer服务端&#xff1a; https://github.com/alibaba/canal/releases/1.1.7/canal.deployer-1.1.7.tar.gz cd /opt/homebrew/etc mkdir canal…...

13.10 LangGraph多轮对话系统实战:Ollama私有部署+情感识别优化全解析

LangGraph多轮对话系统实战:Ollama私有部署+情感识别优化全解析 LanguageMentor 对话式训练系统架构与实现 关键词:多轮对话系统设计、场景化提示工程、情感识别优化、LangGraph 状态管理、Ollama 私有化部署 1. 对话训练系统技术架构 采用四层架构实现高扩展性的对话训练…...

RushDB开源程序 是现代应用程序和 AI 的即时数据库。建立在 Neo4j 之上

一、软件介绍 文末提供程序和源码下载 RushDB 改变了您处理图形数据的方式 — 不需要 Schema&#xff0c;不需要复杂的查询&#xff0c;只需推送数据即可。 二、Key Features ✨ 主要特点 Instant Setup: Be productive in seconds, not days 即时设置 &#xff1a;在几秒钟…...