当前位置: 首页 > news >正文

奇因子之和(C语言)

题意:

一个整数的因子,就是所有可以整除这个数的数。奇数指在整数中,不能被 2 整除的数。所谓整数 Z 的奇因子,就是可以整除 Z 的奇数。
给定 N 个正整数,请你求出它们的第二大奇因子的和。当然,如果该数只有一个奇因子,就用它唯一的那个奇因子去求和。

输入格式:

输入第一行给出一个正整数 N(≤1000)。随后一行给出 N 个不超过 106 的正整数。

输出格式:

在一行中输出所有给定整数的第二大奇因子之和。


输入样例:

5
147 12 35 78 4

输出样例:

71

样例解释:

  • 147 的因子有 { 1、3、7、21、49、147 },第二大奇因子是 49;
  • 12 的因子有 { 1、2、3、4、6、12 },第二大奇因子是 1;
  • 35 的因子有 { 1、5、7、35 },第二大奇因子是 7;
  • 78 的因子有 { 1、2、3、6、13、26、39、78 },第二大奇因子是 13;
  • 4 的因子有 { 1、2、4 },只有一个奇因子,所以用 1 参与求和。
    所以输出的答案是:49+1+7+13+1 = 71。

代码长度限制

16 KB

时间限制

400 ms

内存限制

64 MB


代码如下:

#include <stdio.h>
int test(int a){int cnt=0;while(a%2==0) a/=2;for(int i=1;i*i<=a;i++){if(a%i==0&&(a/i)%2){cnt++;if(2==cnt) return a/i;}	} return 1;}
int main(){int a,n,sum=0;scanf("%d",&n);for(int i=0;i<n;i++){scanf("%d",&a);sum+=test(a);}printf("sum==%d",sum);return 0;}

相关文章:

奇因子之和(C语言)

题意&#xff1a; 一个整数的因子&#xff0c;就是所有可以整除这个数的数。奇数指在整数中&#xff0c;不能被 2 整除的数。所谓整数 Z 的奇因子&#xff0c;就是可以整除 Z 的奇数。 给定 N 个正整数&#xff0c;请你求出它们的第二大奇因子的和。当然&#xff0c;如果该数只…...

简单FTP客户端软件开发——VMware安装Linux虚拟机(命令行版)

VMware安装包和Linux系统镜像&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/1UwF4DT8hNXp_cV0NpSfTww?pwdxnoh 提取码&#xff1a;xnoh 这个学期做计网课程设计【简单FTP客户端软件开发】需要在Linux上配置 ftp服务器&#xff0c;故此用VMware安装了Linux虚拟机&…...

ArkTS开发实践

声明式UI基本概念 应用界面是由一个个页面组成&#xff0c;ArkTS是由ArkUI框架提供&#xff0c;用于以声明式开发范式开发界面的语言。 声明式UI构建页面的过程&#xff0c;其实是组合组件的过程&#xff0c;声明式UI的思想&#xff0c;主要体现在两个方面&#xff1a; 描述…...

vue项目中实现预览pdf

vue项目中实现预览pdf 1. iframe <iframe :src"pdfSrc"></iframe> ​data() {return {pdfSrc: http://192.168.0.254:19000/trend/2023/12/27/5635529375174c7798b5fabc22cbec45.pdf,}},​iframe {width: 100%;height: calc(100vh - 132px - 2 * 20px -…...

【Vulnhub 靶场】【Looz: 1】【简单】【20210802】

1、环境介绍 靶场介绍&#xff1a;https://www.vulnhub.com/entry/looz-1,732/ 靶场下载&#xff1a;https://download.vulnhub.com/looz/Looz.zip 靶场难度&#xff1a;简单 发布日期&#xff1a;2021年08月02日 文件大小&#xff1a;2.1 GB 靶场作者&#xff1a;mhz_cyber &…...

计算机基础面试题 |03.精选计算机基础面试题

&#x1f90d; 前端开发工程师&#xff08;主业&#xff09;、技术博主&#xff08;副业&#xff09;、已过CET6 &#x1f368; 阿珊和她的猫_CSDN个人主页 &#x1f560; 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 &#x1f35a; 蓝桥云课签约作者、已在蓝桥云…...

SQL最消耗性能查询错误用法示例

查询性能的消耗主要取决于查询的复杂度、表的大小以及使用的索引等因素。以下是一些查询中常见的错误用法示例&#xff0c;它们可能导致性能问题&#xff1a; 全表扫描&#xff1a; 错误用法示例&#xff1a; SELECT * FROM your_table;这种查询会检索表中的所有行&#xff0c;…...

Python学习笔记(六)面向对象编程

最近准备HCIE的考试&#xff0c;用空余时间高强度学习python 介绍了Python中面向对象编程的基本概念&#xff0c;包括类、类的属性、类的方法、类的方法中实例方法、类方法、静态方法&#xff0c;在类与对象中动态添加属性和方法&#xff0c;以及继承、类变量、多态等概念 类…...

CCNP课程实验-05-Comprehensive_Experiment

目录 实验条件网络拓朴 基础配置实现IGP需求&#xff1a;1. 根据拓扑所示&#xff0c;配置OSPF和EIGRP2. 在R3上增加一个网段&#xff1a;33.33.33.0/24 (用Loopback 1模拟) 宣告进EIGRP&#xff0c;并在R3上将EIGRP重分布进OSPF。要求重分布进OSPF后的路由Tag值设置为666&…...

第3课 使用FFmpeg获取并播放音频流

本课对应源文件下载链接&#xff1a; https://download.csdn.net/download/XiBuQiuChong/88680079 FFmpeg作为一套庞大的音视频处理开源工具&#xff0c;其源码有太多值得研究的地方。但对于大多数初学者而言&#xff0c;如何快速利用相关的API写出自己想要的东西才是迫切需要…...

Java 动态树的实现思路分析

Java 动态树的实现 目录概述需求&#xff1a; 设计思路实现思路分析1. 简单Java实现&#xff1a;2.建立父子表存储3.前端的对应的json 字符串方式 参考资料和推荐阅读 Survive by day and develop by night. talk for import biz , show your perfect code,full busy&#xff0…...

太阳系三体模拟器

介绍 《三体》是刘慈欣创作的长篇科幻小说&#xff0c;文中提到的三体问题比较复杂和无解。 该项目代码就是利用 Python 来模拟三体的运行&#xff0c;此项目代码完全共享&#xff0c;欢迎下载。 我们可以自己通过调整天体的初始坐标、质量和矢量速度等等参数来自定义各种场景…...

SQL常见面试题

今天刷了一遍牛客里的必知必会题&#xff0c;一共50道题&#xff0c;大部分都比较基础&#xff0c;下面汇总一下易错题。 SQL81 顾客登录名 本题几个关键点&#xff1a; 登录名是其名称和所在城市的组合&#xff0c;因此需要使用substring()和concat()截取和拼接字段。得到登…...

怎么获取客户端真实IP?GO

在使用 Golang 的 net/rpc 包进行 RPC 服务开发时&#xff0c;我们有时候会遇到需要获取客户端的真实 IP 和当前连接 net.Conn 的需求。然而在 net/rpc 的服务处理方法中&#xff0c;并没有提供直接获取到这些信息的途径。 那么&#xff0c;我们应该如何去获取这些信息呢&…...

山海鲸可视化软件的优势:数据整合、可视化与个性化定制

随着科技的快速发展&#xff0c;企业数字化转型已成为必然趋势。而对于一些本身没有开发优势或非技术型企业&#xff0c;数字化产品的选择就成为重中之重。作为山海鲸可视化软件的开发者&#xff0c;我们深知这一点&#xff0c;对于企业来说&#xff0c;能选择一个产品一定要有…...

Mybatis行为配置之Ⅰ—缓存

专栏精选 引入Mybatis Mybatis的快速入门 Mybatis的增删改查扩展功能说明 mapper映射的参数和结果 Mybatis复杂类型的结果映射 Mybatis基于注解的结果映射 Mybatis枚举类型处理和类型处理器 再谈动态SQL Mybatis配置入门 Mybatis行为配置之Ⅰ—缓存 Mybatis行为配置…...

【Java开发岗面试】八股文—计算机网络

声明&#xff1a; 背景&#xff1a;本人为24届双非硕校招生&#xff0c;已经完整经历了一次秋招&#xff0c;拿到了三个offer。本专题旨在分享自己的一些Java开发岗面试经验&#xff08;主要是校招&#xff09;&#xff0c;包括我自己总结的八股文、算法、项目介绍、HR面和面试…...

【PythonRS】基于矢量范围批量下载遥感瓦片高清数据(天地图、高德、谷歌等)

这个是之前写的代码了&#xff0c;正好今天有空所以就和大家分享一下。我们在处理项目时&#xff0c;有时候需要高清底图作为辅助数据源去对比数据&#xff0c;所以可能会需要卫星数据。所以今天就和大家分享一下如何使用Python基于矢量范围批量下载高清遥感瓦片数据。 1 读取矢…...

穷举vs暴搜vs深搜vs回溯vs剪枝

欢迎来到Cefler的博客&#x1f601; &#x1f54c;博客主页&#xff1a;那个传说中的man的主页 &#x1f3e0;个人专栏&#xff1a;题目解析 &#x1f30e;推荐文章&#xff1a;题目大解析&#xff08;3&#xff09; 目录 &#x1f449;&#x1f3fb;全排列&#x1f449;&#…...

Sensor Demosaic IP 手册PG286笔记

《 UG1449 Multimedia User Guide》中包含了大量的多媒体IP简介。 本IP 用于对bayer RGB&#xff08;每个pixel只有单个R/G/B&#xff09;做去马赛克处理&#xff0c;恢复成每个pixel点都有完整的RGB值。通过axi接口配置IP内部erg。 1、算法手册中的描述 提到了几种插值算法&…...

docker详细操作--未完待续

docker介绍 docker官网: Docker&#xff1a;加速容器应用程序开发 harbor官网&#xff1a;Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台&#xff0c;用于将应用程序及其依赖项&#xff08;如库、运行时环…...

rknn优化教程(二)

文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK&#xff0c;开始写第二篇的内容了。这篇博客主要能写一下&#xff1a; 如何给一些三方库按照xmake方式进行封装&#xff0c;供调用如何按…...

使用分级同态加密防御梯度泄漏

抽象 联邦学习 &#xff08;FL&#xff09; 支持跨分布式客户端进行协作模型训练&#xff0c;而无需共享原始数据&#xff0c;这使其成为在互联和自动驾驶汽车 &#xff08;CAV&#xff09; 等领域保护隐私的机器学习的一种很有前途的方法。然而&#xff0c;最近的研究表明&…...

论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)

宇树机器人多姿态起立控制强化学习框架论文解析 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架&#xff08;一&#xff09; 论文解读&#xff1a;交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...

Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理

引言 Bitmap&#xff08;位图&#xff09;是Android应用内存占用的“头号杀手”。一张1080P&#xff08;1920x1080&#xff09;的图片以ARGB_8888格式加载时&#xff0c;内存占用高达8MB&#xff08;192010804字节&#xff09;。据统计&#xff0c;超过60%的应用OOM崩溃与Bitm…...

CMake控制VS2022项目文件分组

我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...

智能分布式爬虫的数据处理流水线优化:基于深度强化学习的数据质量控制

在数字化浪潮席卷全球的今天&#xff0c;数据已成为企业和研究机构的核心资产。智能分布式爬虫作为高效的数据采集工具&#xff0c;在大规模数据获取中发挥着关键作用。然而&#xff0c;传统的数据处理流水线在面对复杂多变的网络环境和海量异构数据时&#xff0c;常出现数据质…...

管理学院权限管理系统开发总结

文章目录 &#x1f393; 管理学院权限管理系统开发总结 - 现代化Web应用实践之路&#x1f4dd; 项目概述&#x1f3d7;️ 技术架构设计后端技术栈前端技术栈 &#x1f4a1; 核心功能特性1. 用户管理模块2. 权限管理系统3. 统计报表功能4. 用户体验优化 &#x1f5c4;️ 数据库设…...

佰力博科技与您探讨热释电测量的几种方法

热释电的测量主要涉及热释电系数的测定&#xff0c;这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中&#xff0c;积分电荷法最为常用&#xff0c;其原理是通过测量在电容器上积累的热释电电荷&#xff0c;从而确定热释电系数…...

【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论

路径问题的革命性重构&#xff1a;基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中&#xff08;图1&#xff09;&#xff1a; mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...