Spark---RDD算子(单值类型Value)
文章目录
- 1.RDD算子介绍
- 2.转换算子
- 2.1 Value类型
- 2.1.1 map
- 2.1.2 mapPartitions
- 2.1.3 mapPartitionsWithIndex
- 2.1.4 flatMap
- 2.1.5 glom
- 2.1.6 groupBy
- 2.1.7 filter
- 2.1.8 sample
- 2.1.9 distinct
- 2.1.10 coalesce
- 2.1.11 repartition
- 2.1.12 sortBy
1.RDD算子介绍
RDD算子是用于对RDD进行转换(Transformation)或行动(Action)操作的方法或函数。通俗来讲,RDD算子就是RDD中的函数或者方法,根据其功能,RDD算子可以分为两大类:
转换算子(Transformation): 转换算子用于从一个RDD生成一个新的RDD,但是原始RDD保持不变。常见的转换算子包括map、filter、flatMap等,它们通过对RDD的每个元素执行相应的操作来生成新的RDD。
行动算子(Action): 行动算子触发对RDD的实际计算,并返回计算结果或将结果写入外部存储系统。与转换算子不同,行动算子会导致Spark作业的执行。如collect方法。
2.转换算子
RDD 根据数据处理方式的不同将算子整体上分为:
Value 类型:对一个RDD进行操作或行动,生成一个新的RDD。
双 Value 类型:对两个RDD进行操作或行动,生成一个新的RDD。
Key-Value类型:对键值对进行操作,如reduceByKey((x, y),按照key对value进行合并。
2.1 Value类型
2.1.1 map
将处理的数据逐条进行映射转换,这里的转换可以是类型的转换,也可以是值的转换。
函数定义
def map[U: ClassTag](f: T => U): RDD[U]
代码实现:
//建立与Spark框架的连接val rdd = new SparkConf().setMaster("local[*]").setAppName("RDD") //配置文件val sparkRdd = new SparkContext(rdd) //读取配置文件val mapRdd: RDD[Int] = sparkRdd.makeRDD(List(1, 2, 3, 4))//对mapRdd进行转换val mapRdd1 = mapRdd.map(num => num * 2)//对mapRdd1进行转换val mapRdd2 = mapRdd1.map(num => num + "->")mapRdd2.collect().foreach(print)sparkRdd.stop();//关闭连接
2.1.2 mapPartitions
将待处理的数据以分区为单位发送到计算节点进行处理,这里的处理是指可以进行任意的处理,哪怕是过滤数据。
函数定义
def mapPartitions[U: ClassTag](
f: Iterator[T] => Iterator[U],
preservesPartitioning: Boolean = false): RDD[U]
Map 算子是分区内一个数据一个数据的执行,类似于串行操作。而 mapPartitions 算子是以分区为单位进行批处理操作。
mapPartitions在处理数据的时候因为是批处理,相对于map来说处理效率较高,但是如果数据量较大的情况下使用mapPartitions可能会造成内存溢出,因为mapPartitions会将分区内的数据全部加载到内存中。此时更推荐使用map。
2.1.3 mapPartitionsWithIndex
将待处理的数据以分区为单位发送到计算节点进行处理,这里的处理是指可以进行任意的处理,哪怕是过滤数据,在处理时同时可以获取当前分区索引。
函数定义
def mapPartitionsWithIndex[U: ClassTag](
f: (Int, Iterator[T]) => Iterator[U],
preservesPartitioning: Boolean = false): RDD[U]
实现只保留第二个分区的数据
val mapRdd: RDD[Int] = sparkRdd.makeRDD(List(1, 2, 3, 4),2)val newRdd: RDD[Int] = mapRdd.mapPartitionsWithIndex((index, iterator) => {if (index == 1) iteratorelse Nil.iterator})newRdd.collect().foreach(println)
2.1.4 flatMap
将处理的数据进行扁平化后再进行映射处理,所以算子也称之为扁平映射
//建立与Spark框架的连接val rdd = new SparkConf().setMaster("local[*]").setAppName("RDD") //配置文件val sparkRdd = new SparkContext(rdd) //读取配置文件val rdd1: RDD[List[Int]] = sparkRdd.makeRDD(List(List(1, 2), List(3, 4)))val rdd2: RDD[String] = sparkRdd.makeRDD(List("Hello Java", "Hello Scala"), 2)val frdd1: RDD[Int] =rdd1.flatMap(list=>{list})val frdd2: RDD[String] =rdd2.flatMap(str=>str.split(" "))frdd1.collect().foreach(println)frdd2.collect().foreach(println)sparkRdd.stop();//关闭连接
2.1.5 glom
将同一个分区的数据直接转换为相同类型的内存数组进行处理,分区不变,glom函数的作用就是将一组数据转换为数组。
函数定义
def glom(): RDD[Array[T]]
/建立与Spark框架的连接val rdd = new SparkConf().setMaster("local[*]").setAppName("RDD") //配置文件val sparkRdd = new SparkContext(rdd) //读取配置文件val rdd1: RDD[Any] = sparkRdd.makeRDD(List(1,2,3,4),2)val value: RDD[Array[Any]] = rdd1.glom()value.collect().foreach(data=> println(data.mkString(",")))sparkRdd.stop();//关闭连接
2.1.6 groupBy
将数据根据指定的规则进行分组, 分区默认不变,但是数据会被打乱重新组合,我们将这样的操作称之为 shuffle。 极限情况下,数据可能被分在同一个分区中
函数定义
def groupBy[K](f: T => K)(implicit kt: ClassTag[K]): RDD[(K, Iterable[T])]
//按照奇偶分组val rdd1: RDD[Int] = sparkRdd.makeRDD(List(1,2,3,4),2)val value = rdd1.groupBy(num => num % 2)value.collect().foreach(println)//将 List("Hello", "hive", "hbase", "Hadoop")根据单词首写字母进行分组。val rdd2: RDD[String] = sparkRdd.makeRDD(List("Hello", "hive", "hbase", "Hadoop"))val value1: RDD[(Char, Iterable[String])] = rdd2.groupBy(str => {str.charAt(0)})value1.collect().foreach(println)
2.1.7 filter
将数据根据指定的规则进行筛选过滤,符合规则的数据保留,不符合规则的数据丢弃。当数据进行筛选过滤后,分区不变,但是分区内的数据可能不均衡,生产环境下,可能会出现数据倾斜。
函数定义
def filter(f: T => Boolean): RDD[T]
//获取偶数val dataRDD = sparkRdd.makeRDD(List(1, 2, 3, 4), 1)val value1 = dataRDD.filter(_ % 2 == 0)
2.1.8 sample
函数定义
def sample(
withReplacement: Boolean,
fraction: Double,
seed: Long = Utils.random.nextLong): RDD[T]
根据指定的规则从数据集中抽取数据
参数具体意义:
1.抽取数据不放回withReplacement: Boolean, 该参数表示抽取不放回,此时采用伯努利算法(false)fraction: Double,该参数表示抽取的几率,范围在[0,1]之间,0:全不取;1:全取;seed: Long = Utils.random.nextLong): RDD[T] 该参数表示随机数种子2.抽取数据放回withReplacement: Boolean, 该参数表示抽取放回,此时采用泊松算法(true)fraction: Double,该参数表示重复数据的几率,范围大于等于 0.表示每一个元素被期望抽取到的次数seed: Long = Utils.random.nextLong): RDD[T] 该参数表示随机数种子
2.1.9 distinct
将数据集中重复的数据去重
def distinct()(implicit ord: Ordering[T] = null): RDD[T]
def distinct(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T]
val dataRDD = sparkRdd.makeRDD(List(1, 2, 3, 4, 1, 2), 6)val value = dataRDD.distinct()
2.1.10 coalesce
根据数据量缩减分区,用于大数据集过滤后,提高小数据集的执行效率当 spark 程序中,存在过多的小任务的时候,可以通过 coalesce 方法,收缩合并分区,减少分区的个数,减小任务调度成本
def coalesce(numPartitions: Int, shuffle: Boolean = false,
partitionCoalescer: Option[PartitionCoalescer] = Option.empty)
(implicit ord: Ordering[T] = null)
: RDD[T]
//初始Rdd采用6个分区val dataRDD = sparkRdd.makeRDD(List(1, 2, 3, 4, 1, 2), 6)//将分区数量缩减至2个val value = dataRDD.coalesce(2)
在coalesce中默认不开启shuffle,在进行分区缩减的时候,数据不会被打散。
2.1.11 repartition
def repartition(numPartitions: Int)(implicit ord: Ordering[T] = null): RDD[T]
repartition内部其实执行的是 coalesce 操作,参数 shuffle 的默认值为 true。无论是将分区数多的RDD 转换为分区数少的 RDD,还是将分区数少的 RDD 转换为分区数多的 RDD,repartition操作都可以完成,因为无论如何都会经 shuffle 过程。
//将分区数量从2个提升至4个val dataRDD = sparkRdd.makeRDD(List(1, 2, 3, 4, 1, 2), 2)val dataRDD1 = dataRDD.repartition(4)
2.1.12 sortBy
该操作用于排序数据。在排序之前,可以将数据通过 f 函数进行处理,之后按照 f 函数处理的结果进行排序,默认为升序排列。排序后新产生的 RDD 的分区数与原 RDD 的分区数一致。中间存在 shuffle 的过程
def sortBy[K](
f: (T) => K, 该参数表述用于处理的函数
ascending: Boolean = true, 该参数表示是否升序排序
numPartitions: Int = this.partitions.length) 该参数表示设置分区数量
(implicit ord: Ordering[K], ctag: ClassTag[K]): RDD[T]
val dataRDD = sparkRdd.makeRDD(List(1, 2, 3, 4, 1, 2), 2)//按照初始数据降序排列val dataRDD1 = dataRDD.sortBy(num => num, false, 4)
相关文章:

Spark---RDD算子(单值类型Value)
文章目录 1.RDD算子介绍2.转换算子2.1 Value类型2.1.1 map2.1.2 mapPartitions2.1.3 mapPartitionsWithIndex2.1.4 flatMap2.1.5 glom2.1.6 groupBy2.1.7 filter2.1.8 sample2.1.9 distinct2.1.10 coalesce2.1.11 repartition2.1.12 sortBy 1.RDD算子介绍 RDD算子是用于对RDD进…...
数据库中的MVCC--多版本并发控制
一、前言 1、定义:MVCC(Multi-Version Concurrency Control),多版本并发控制,主要为了提高数据库 的并发性能。是MySQL的InnoDB存储引擎实现隔离级别的一种具体方式。用于实现提交读和可重 复读这两种隔离级别。 2…...

wps将姓名处理格式为:姓**
1.打开wps,在要处理数据右侧一个单元格 输入公式:LEFT(A1,1)&"**",然后回车 2.按住ctrl和处理好的数据的右下角小方框,往下拖动即可生成格式为:姓** 格式的数据 3.复制生成的数据,右键选择 “…...
2023年我的编程之旅:技术演进与自我成长的纪录
2023年我的编程之旅:技术演进与自我成长的纪录 转眼间,2023年已经悄然走到了尾声。这一年,对我来说既是挑战也是机遇的一年。我的编程之旅如同坐上了一辆高速前进的列车,从新技术的学习探索到项目实战的沉浸经历,再到…...

好用免费的WAF---如何安装雷池社区版
什么是雷池 雷池(SafeLine)是长亭科技耗时近 10 年倾情打造的 WAF,核心检测能力由智能语义分析算法驱动。 Slogan: 不让黑客越雷池半步。 什么是 WAF WAF 是 Web Application Firewall 的缩写,也被称为 Web 应用防火墙。 …...

看似 bug 又非 bug 的一个 bug
最近的一个项目中,对于 CSS 的一些属性一些选择符可以大胆使用,然后很意外得撞上一个 iOS 中 Safari 的一个解析问题。 <Component style{{height: "calc(100vh - 46px)"}}>一个组件</Component> 这样的一段代码很简单ÿ…...
mysql常见问题
批量导入SQL 数据库结构 数据时,如果数据是批量插入的话会报错:2006 - MySQL server has gone away。 解决办法:找到你的 mysql 目录下的 my.ini 配置文件,加入以下代码 max_allowed_packet500M wait_timeout288000 interactiv…...

QT上位机开发(串口界面设计)
【 声明:版权所有,欢迎转载,请勿用于商业用途。 联系信箱:feixiaoxing 163.com】 如果上位机要和嵌入式设备进行打交道的话,那么串口可能就是我们遇到的第一个硬件设备。串口的物理接线很简单,基本上就是收…...

k8s之pod
1、pod:k8s中最小的资源管理组件,最小化运行容器化应用的资源管理对象 (1)pod是一个抽象的概念,可以理解为一个或者多个容器化应用的集合 (2)一个pod中运行一个容器是最常用的方式 ÿ…...

第二百四十三回 再分享一个Json工具
文章目录 1. 概念介绍2. 分析与比较2.1 分析问题2.2 比较差异 3. 使用方法4. 内容总结 我们在上一章回中介绍了"分享三个使用TextField的细节"相关的内容,本章回中将再 分享一个Json插件.闲话休提,让我们一起Talk Flutter吧。 1. 概念介绍 我…...

electron自定义菜单
创建menu.js const { app, Menu } require("electron"); const createMenu () > {const menu [{label: "菜单",submenu: [{label: "新增",click: () > {},}, ],},{label: "关于",submenu: [{label: "新增",click:…...
变量和函数提升(js的问题)
• js解释执行 • 变量和函数提升 变量声明提前,函数声明提前 • 变量声明提前:值停留在本地 • 函数声明提前:整个函数体提前 如果是var赋值声明的函数,变量提前,函数体停留在本地 1、变量提…...

Excel 插件:ASAP Utilities Crack
ASAP Utilities是一款功能强大的 Excel 插件,填补了 Excel 的空白。在过去的 20 年里,我们的加载项已经发展成为世界上最受欢迎的 Microsoft Excel 加载项之一。 ASAP Utilities 中的功能数量(300 多个)可能看起来有点令人眼花缭乱…...
hyperf 十九 数据库 二 模型
教程:Hyperf 一、命令行 symfony/console-CSDN博客 hypery 十一、命令行-CSDN博客 hyperf console 执行-CSDN博客 根据之前应该能了解到命令行的基本实现,和hyperf中命令行的定义。 1.1 命令初始化 hyperf.php中系统初始化中通过ApplicationFacto…...

使用python快速开发与PDF文档对话的Gemini聊天机器人
检索增强生成(Retrieval-augmented generation,RAG)使得我们可以让大型语言模型(LLMs)访问外部知识库数据(如pdf,word、text等),从而让人们可以更加方便的通过LLM来学习外部数据的知识。今天我们将利用之前学习到的RAG方法,谷歌Gemini模型和l…...

Spring Cloud Gateway集成Knife4j
1、前提 网关路由能够正常工作。 案例 基于 Spring Cloud Gateway Nacos 实现动态路由拓展的参考地址:Spring Cloud Gateway Nacos 实现动态路由 详细官网案例:https://doc.xiaominfo.com/docs/middleware-sources/spring-cloud-gateway/spring-gatewa…...

Hive10_窗口函数
窗口函数(开窗函数) 1 相关函数说明 普通的聚合函数聚合的行集是组,开窗函数聚合的行集是窗口。因此,普通的聚合函数每组(Group by)只返回一个值,而开窗函数则可为窗口中的每行都返回一个值。简单理解,就是对查询的结果多出一列…...
ipvsadm命令详解
ipvsadm命令详解 大家好,我是免费搭建查券返利机器人赚佣金就用微赚淘客系统3.0的小编,也是冬天不穿秋裤,天冷也要风度的程序猿!今天我们将深入探讨一个在Linux系统网络管理中极具威力的命令——ipvsadm,通过详细解析…...

zabbix通过自动发现-配置监控项、触发器(小白教程)
自动发现配置参考链接(不小白,不友好) zabbix-get介绍 1配置 zabbix server:版本7(不影响),IP地址:192.168.0.60zabbix agent:版本agent1(不影响)ÿ…...
Dockerfile文件介绍
0 Preface/Foreword 0.1 Docker docker用来自制镜像。 1 Introduction 1.1 Dockerfile Dockerfile是用于定义Docker镜像的构建过程,它包含一系列的指令用于安装 软件包、配置环境等操作。 Dockerfile文件的格式如下: FROM base_image RUN apt-get up…...
内存分配函数malloc kmalloc vmalloc
内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...

K8S认证|CKS题库+答案| 11. AppArmor
目录 11. AppArmor 免费获取并激活 CKA_v1.31_模拟系统 题目 开始操作: 1)、切换集群 2)、切换节点 3)、切换到 apparmor 的目录 4)、执行 apparmor 策略模块 5)、修改 pod 文件 6)、…...

23-Oracle 23 ai 区块链表(Blockchain Table)
小伙伴有没有在金融强合规的领域中遇见,必须要保持数据不可变,管理员都无法修改和留痕的要求。比如医疗的电子病历中,影像检查检验结果不可篡改行的,药品追溯过程中数据只可插入无法删除的特性需求;登录日志、修改日志…...
Java 加密常用的各种算法及其选择
在数字化时代,数据安全至关重要,Java 作为广泛应用的编程语言,提供了丰富的加密算法来保障数据的保密性、完整性和真实性。了解这些常用加密算法及其适用场景,有助于开发者在不同的业务需求中做出正确的选择。 一、对称加密算法…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍
文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结: 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析: 实际业务去理解体会统一注…...
Java入门学习详细版(一)
大家好,Java 学习是一个系统学习的过程,核心原则就是“理论 实践 坚持”,并且需循序渐进,不可过于着急,本篇文章推出的这份详细入门学习资料将带大家从零基础开始,逐步掌握 Java 的核心概念和编程技能。 …...
实现弹窗随键盘上移居中
实现弹窗随键盘上移的核心思路 在Android中,可以通过监听键盘的显示和隐藏事件,动态调整弹窗的位置。关键点在于获取键盘高度,并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...

select、poll、epoll 与 Reactor 模式
在高并发网络编程领域,高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表,以及基于它们实现的 Reactor 模式,为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。 一、I…...

什么是Ansible Jinja2
理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具,可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板,允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板,并通…...
Web 架构之 CDN 加速原理与落地实践
文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 …...