当前位置: 首页 > news >正文

Flappy Bird QDN PyTorch博客 - 代码解读

Flappy Bird QDN PyTorch博客 - 代码解读

    • 介绍
    • 环境配置
    • 项目目录结构
    • QDN算法
    • 重要函数解读
      • preprocess(observation)
      • DeepNetWork(nn.Module)
      • BirdDQN类
      • 主程序部分

介绍

在本博客中,我们将介绍如何使用QDN(Quantile Dueling Network)算法,在PyTorch平台下训练Flappy Bird游戏。QDN算法是一种强化学习算法,特别适用于处理具有不确定性的环境,如游戏。
在这里插入图片描述

环境配置

在开始之前,请确保您已经配置好了以下环境:

(rl) PS C:\Users\dd> conda list
# packages in environment at D:\Software\Miniconda3\envs\rl:
#
# Name                    Version                   Build  Channel
numpy                     1.22.3           py38h7a0a035_0    defaults
numpy-base                1.22.3           py38hca35cd5_0    defaults
opencv-python             4.6.0.66                 pypi_0    pypi
pillow                    6.2.1                    pypi_0    pypi
pygame                    2.1.2                    pypi_0    pypi
pygments                  2.11.2             pyhd3eb1b0_0    defaults
python                    3.8.13               h6244533_0    defaults
python-dateutil           2.8.2              pyhd3eb1b0_0    defaults
python_abi                3.8                      2_cp38    conda-forge
pytorch                   1.8.2           py3.8_cuda11.1_cudnn8_0    pytorch-lts

请确保您的环境中包含了以上所列的依赖项,特别是PyTorch版本为1.8.2。

项目目录结构

在这里,我们将简要介绍项目的目录结构,以便您更好地理解整个项目的组织和文件布局。

项目根目录
|-- qdn_train.py          # QDN算法训练脚本
|-- flappy_bird.py        # Flappy Bird游戏实现
|-- model.py              # QDN模型定义
|-- replay_buffer.py      # 经验回放缓存实现
|-- utils.py              # 辅助工具函数
|-- ...

QDN算法

QDN(Quantile Dueling Network)算法是一种强化学习算法,用于训练智能体在Flappy Bird游戏中做出决策。以下是算法的关键要点:

  1. Replay Memory(记忆库): 在每个时间步,智能体与环境交互,将经验存储在记忆库中。这些经验包括当前状态、选择的动作、获得的奖励、下一个状态以及游戏是否终止。

  2. 神经网络架构: 使用PyTorch实现了一个神经网络,其中包括卷积层和全连接层。神经网络的输出是每个可能动作的Q值。

  3. 训练过程: 在每个时间步,智能体根据当前状态选择一个动作。通过与环境交互,获得下一个状态、奖励和终止信号。这些信息被用来更新神经网络的权重,以最大化预期累积奖励。

  4. Epsilon-Greedy Exploration: 在训练的早期阶段,智能体更多地依赖于探索,通过随机选择动作来发现更多可能的策略。随着训练的进行,探索率逐渐减小。

  5. Target Network: 为了稳定训练,引入了一个目标网络,定期从主网络复制参数。这有助于减小训练中的波动性。

重要函数解读

preprocess(observation)

将一帧彩色图像处理成黑白的二值图像。使用OpenCV将图像调整为80x80大小,转换为灰度图,并进行二值化处理。

DeepNetWork(nn.Module)

定义了神经网络的结构,包括卷积层和全连接层。用于近似Q值函数。

BirdDQN类

主要的强化学习智能体类,包括了以下主要函数:

  • save(): 保存训练好的模型参数。
  • load(): 加载已保存的模型参数。
  • train(): 使用小批量的记忆数据进行神经网络训练。
  • setPerception(): 更新记忆库,判断是否进行训练,输出当前状态信息。
  • getAction(): 根据当前状态,通过epsilon-greedy策略选择动作。
  • setInitState(): 初始化状态,将一帧图像复制四次作为初始输入。

主程序部分

创建了BirdDQN智能体实例,与Flappy Bird游戏环境交互,并不断执行动作,观察状态变化,更新神经网络参数。

以上是对代码的主要算法和函数的解读。这个项目结合了深度学习和强化学习,通过训练智能体来玩Flappy Bird游戏,展示了在PyTorch平台下的实现过程。如果读者有任何疑问或需要进一步解释,请在评论中提出。祝愿你在实践中获得成功!

相关文章:

Flappy Bird QDN PyTorch博客 - 代码解读

Flappy Bird QDN PyTorch博客 - 代码解读 介绍环境配置项目目录结构QDN算法重要函数解读preprocess(observation)DeepNetWork(nn.Module)BirdDQN类主程序部分 介绍 在本博客中,我们将介绍如何使用QDN(Quantile Dueling Network)算法&#xf…...

听GPT 讲Rust源代码--compiler(9)

File: rust/compiler/rustc_trait_selection/src/traits/select/mod.rs 在Rust源代码中,rust/compiler/rustc_trait_selection/src/traits/select/mod.rs文件的作用是实现Rust编译器的trait选择器。 首先,让我们逐个介绍这些struct的作用: Se…...

Go语言中关于go get, go install, go build, go run指令

go get go get 它会执行两个操作 第一个, 是先将远程的代码克隆到Go Path的 src 目录那二个, 是执行go install命令 那如果指定的包可以生成二进制文件那它就会把这个二进制文件保存到这个 Go Path 的bin目录下面这是 go install 命令执行的操作 如果只需要下载包&#xff0c…...

石头剪刀布游戏 - 华为OD统一考试

OD统一考试 分值: 100分 题解: Java / Python / C++ 题目描述 石头剪刀布游戏有 3 种出拳形状: 石头、剪刀、布。分别用字母 A,B,C 表示游戏规则: 出拳形状之间的胜负规则如下: A>B; B>C; C>A; 左边一个字母,表示相对优势形状。右边一个字母,表示相对劣势形状。…...

【北亚服务器数据恢复】ZFS文件系统服务器ZPOOL下线的数据恢复案例

服务器数据恢复环境: 服务器中有32块硬盘,组建了3组RAIDZ,部分磁盘作为热备盘。zfs文件系统。 服务器故障: 服务器运行中突然崩溃,排除断电、进水、异常操作等外部因素。工作人员将服务器重启后发现无法进入操作系统。…...

C# 反射的终点:Type,MethodInfo,PropertyInfo,ParameterInfo,Summry

文章目录 前言反射是什么?常用类型操作SummryPropertyInfoMethodInfo无参函数运行 有参函数运行,获取paramterInfo 总结 前言 我之前写了一篇Attribute特性的介绍,成功拿到了Attribute的属性,但是如果把Attribute玩的溜,那就要彻…...

2020年认证杯SPSSPRO杯数学建模D题(第一阶段)让电脑桌面飞起来全过程文档及程序

2020年认证杯SPSSPRO杯数学建模 D题 让电脑桌面飞起来 原题再现: 对于一些必须每天使用电脑工作的白领来说,电脑桌面有着非常特殊的意义,通常一些频繁使用或者比较重要的图标会一直保留在桌面上,但是随着时间的推移,…...

谷歌推出创新SynCLR技术:借助AI生成的数据实现高效图像建模,开启自我训练新纪元!

谷歌推出了一种创新性的合成图像框架,这一框架独特之处在于它完全不依赖真实数据。这个框架首先从合成的图像标题开始,然后基于这些标题生成相应的图像。接下来,通过对比学习的技术进行深度学习,从而训练出能够精准识别和理解这些…...

Vue2中使用echarts,并从后端获取数据同步

一、安装echarts npm install echarts -S 二、导入echarts 在script中导入&#xff0c;比如&#xff1a; import * as echarts from "echarts"; 三、查找要用的示例 比如柱状图 四、初始化并挂载 <template><div id"total-orders-chart" s…...

【Redux】自己动手实现redux-thunk

1. 前言 在原始的redux里面&#xff0c;action必须是plain object&#xff0c;且必须是同步。而我们经常使用到定时器&#xff0c;网络请求等异步操作&#xff0c;而redux-thunk就是为了解决异步动作的问题而出现的。 2. redux-thunk中间件实现源码 function createThunkMidd…...

ElasticSearch使用Grafana监控服务状态-Docker版

文章目录 版本信息构建docker-compose.yml参数说明 创建Prometheus配置文件启动验证配置Grafana导入监控模板模板说明 参考资料 版本信息 ElasticSearch&#xff1a;7.14.2 elasticsearch_exporter&#xff1a;1.7.0&#xff08;latest&#xff09; 下载地址&#xff1a;http…...

VS Code 如何调试Python文件

VS Code中有1,2,3处跟Run and Debug相关的按钮&#xff0c; 1 处&#xff1a;调试和运行就不多说了&#xff0c;Open Configurations就是打开workspace/.vscode下的lauch.json文件&#xff0c;而Add Configuration就是在lauch.json文件中添加当前运行Python文件的Configuratio…...

day06、SQL语言之概述

SQl 语言之概述 6.1 SQL语言概述6.2 SQL语言之DDL定义数据库6.3 SQL语言之DML操纵数据库 6.1 SQL语言概述 6.2 SQL语言之DDL定义数据库 6.3 SQL语言之DML操纵数据库...

3D目标检测(教程+代码)

随着计算机视觉技术的不断发展&#xff0c;3D目标检测成为了一个备受关注的研究领域。与传统的2D目标检测相比&#xff0c;3D目标检测可以在三维空间中对物体进行定位和识别&#xff0c;具有更高的准确性和适用性。本文将介绍3D目标检测的相关概念、方法和代码实现。 一、3D目…...

让设备更聪明 |启英泰伦离线自然说,开启智能语音交互新体验!

语音交互按部署方式可以分为两种&#xff1a;离线语音交互和在线语音交互。 在线语音交互是将数据储存在云端&#xff0c;其具备足够大的存储空间和算力&#xff0c;可以实现海量的语音数据处理。 离线语音交互是以语音芯片为载体&#xff0c;语音数据的采集、计算、决策均在…...

React Hooks之useState、useRef

文章目录 React Hooks之useStateReact HooksuseStatedemo&#xff1a;在函数式组件中使用 useState Hook 管理计数器demo&#xff1a;ant-design-pro 中EditableProTable组件使用 useRef React Hooks之useState React Hooks 在 React 16.8 版本中引入了 Hooks&#xff0c;它是…...

提供电商Api接口-100种接口,淘宝,1688,抖音商品详情数据安全,稳定,支持高并发

Java是一种高级编程语言&#xff0c;由Sun Microsystems公司于1995年推出&#xff0c;现在属于Oracle公司开发和维护。Java以平台无关性、面向对象、安全性、可移植性和高性能著称&#xff0c;广泛用于桌面应用程序、嵌入式系统、企业级服务、Android移动应用程序等。 接口是Ja…...

git的使用 笔记1

GIT git的使用 使用git提交的两步 第一步&#xff1a;是使用 git add 把文件添加进去&#xff0c;实际上就是把文件添加到暂存区。第二步&#xff1a;使用git commit提交更改&#xff0c;实际上就是把暂存区的所有内容提交到当前分支上。 .git 跟踪管理版本的目录 创建版本库…...

基于SpringBoot的医疗挂号管理系统

文章目录 项目介绍主要功能截图:部分代码展示设计总结项目获取方式🍅 作者主页:超级无敌暴龙战士塔塔开 🍅 简介:Java领域优质创作者🏆、 简历模板、学习资料、面试题库【关注我,都给你】 🍅文末获取源码联系🍅 项目介绍 基于SpringBoot的医疗挂号管理系统,java…...

prometheus与zabbix监控的对比介绍

一、普米与zabbix基本介绍 1、prometheus介绍 Prometheus的基本原理是Prometheus Server通过HTTP周期性抓取被监控组件的监控数据&#xff0c;任意组件只要提供对应的HTTP接口并且符合Prometheus定义的数据格式&#xff0c;就可以接入Prometheus监控。 工作流程大致分为收集数…...

el-switch文字内置

el-switch文字内置 效果 vue <div style"color:#ffffff;font-size:14px;float:left;margin-bottom:5px;margin-right:5px;">自动加载</div> <el-switch v-model"value" active-color"#3E99FB" inactive-color"#DCDFE6"…...

cf2117E

原题链接&#xff1a;https://codeforces.com/contest/2117/problem/E 题目背景&#xff1a; 给定两个数组a,b&#xff0c;可以执行多次以下操作&#xff1a;选择 i (1 < i < n - 1)&#xff0c;并设置 或&#xff0c;也可以在执行上述操作前执行一次删除任意 和 。求…...

智能AI电话机器人系统的识别能力现状与发展水平

一、引言 随着人工智能技术的飞速发展&#xff0c;AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术&#xff0c;在客户服务、营销推广、信息查询等领域发挥着越来越重要…...

CVE-2020-17519源码分析与漏洞复现(Flink 任意文件读取)

漏洞概览 漏洞名称&#xff1a;Apache Flink REST API 任意文件读取漏洞CVE编号&#xff1a;CVE-2020-17519CVSS评分&#xff1a;7.5影响版本&#xff1a;Apache Flink 1.11.0、1.11.1、1.11.2修复版本&#xff1a;≥ 1.11.3 或 ≥ 1.12.0漏洞类型&#xff1a;路径遍历&#x…...

FFmpeg avformat_open_input函数分析

函数内部的总体流程如下&#xff1a; avformat_open_input 精简后的代码如下&#xff1a; int avformat_open_input(AVFormatContext **ps, const char *filename,ff_const59 AVInputFormat *fmt, AVDictionary **options) {AVFormatContext *s *ps;int i, ret 0;AVDictio…...

rknn toolkit2搭建和推理

安装Miniconda Miniconda - Anaconda Miniconda 选择一个 新的 版本 &#xff0c;不用和RKNN的python版本保持一致 使用 ./xxx.sh进行安装 下面配置一下载源 # 清华大学源&#xff08;最常用&#xff09; conda config --add channels https://mirrors.tuna.tsinghua.edu.cn…...

高抗扰度汽车光耦合器的特性

晶台光电推出的125℃光耦合器系列产品&#xff08;包括KL357NU、KL3H7U和KL817U&#xff09;&#xff0c;专为高温环境下的汽车应用设计&#xff0c;具备以下核心优势和技术特点&#xff1a; 一、技术特性分析 高温稳定性 采用先进的LED技术和优化的IC设计&#xff0c;确保在…...

工厂方法模式和抽象工厂方法模式的battle

1.案例直接上手 在这个案例里面&#xff0c;我们会实现这个普通的工厂方法&#xff0c;并且对比这个普通工厂方法和我们直接创建对象的差别在哪里&#xff0c;为什么需要一个工厂&#xff1a; 下面的这个是我们的这个案例里面涉及到的接口和对应的实现类&#xff1a; 两个发…...

【系统架构设计师-2025上半年真题】综合知识-参考答案及部分详解(回忆版)

更多内容请见: 备考系统架构设计师-专栏介绍和目录 文章目录 【第1题】【第2题】【第3题】【第4题】【第5题】【第6题】【第7题】【第8题】【第9题】【第10题】【第11题】【第12题】【第13题】【第14题】【第15题】【第16题】【第17题】【第18题】【第19题】【第20~21题】【第…...

Linux【5】-----编译和烧写Linux系统镜像(RK3568)

参考&#xff1a;讯为 1、文件系统 不同的文件系统组成了&#xff1a;debian、ubuntu、buildroot、qt等系统 每个文件系统的uboot和kernel是一样的 2、源码目录介绍 目录 3、正式编译 编译脚本build.sh 帮助内容如下&#xff1a; Available options: uboot …...