当前位置: 首页 > news >正文

好的OODA循环与快慢无关

OODA循环是指观察(Observe)、导向(Orient)、决策(Decide)和行动(Act)这四个步骤的循环过程。它是一种决策和行动的框架,旨在帮助个人或组织更快地适应和应对变化。

OODA循环的快慢与其有效性和效率有关,而不仅仅是时间上的快慢。快速决策和迅速行动在某些情况下是非常重要的,特别是在竞争激烈的环境中。然而,仅仅快速地做出决策和行动并不一定意味着循环的有效性。

OODA循环的有效性与以下因素有关:

观察力:能够准确观察和识别关键信息是循环的关键。快速但不准确的观察可能导致错误的决策和行动。

导向力:如何根据观察到的信息进行适应和调整。具有清晰的目标和理解环境的能力对循环的有效性至关重要。

决策力:能够根据观察和导向做出明智的决策。决策的质量取决于对信息的准确理解以及对可能结果的评估。

行动力:能够迅速采取行动来执行决策。快速决策和行动可能是循环的一部分,但它们必须是基于有效的观察、导向和决策。

因此,快慢与OODA循环相关,但它们并不是唯一重要的因素。循环的有效性取决于整个过程中的质量和准确性,而不仅仅是速度。

OODA循环越快也可能越危险。虽然快速的OODA循环可以帮助人们更迅速地适应和应对变化,但如果循环过快而不经过充分的观察和评估阶段,可能会导致错误的决策和行动。这种过快的循环可能导致信息的不完整性和错误的判断,从而增加危险和风险。因此,在OODA循环中,平衡速度和准确性是至关重要的。

3607000d0b65a011238f737a2bd8e2e5.jpeg

相关文章:

好的OODA循环与快慢无关

OODA循环是指观察(Observe)、导向(Orient)、决策(Decide)和行动(Act)这四个步骤的循环过程。它是一种决策和行动的框架,旨在帮助个人或组织更快地适应和应对变化。 OODA循…...

Android 车联网——CarUserService介绍(十三)

一、简介 CarUserService 是 Android 汽车平台的一个组件,它用于管理和提供车辆用户信息。该组件可以让开发者创建和管理与车辆用户相关的数据和配置,包括车辆拥有者和乘客的个人信息、偏好设置、用户偏好配置文件等。 CarUserService 提供了以下功能和特性: 用户配置管理:…...

【开题报告】基于微信小程序的母婴商品仓库管理系统的设计与实现

1.选题背景 随着社会经济的发展和家庭生活水平的提高,母婴商品市场逐渐兴起。然而,传统的母婴商品仓库管理方式存在着许多问题,如信息不透明、操作繁琐等。为了提高仓库管理的效率和准确性,基于微信小程序的母婴商品仓库管理系统…...

分布式锁相关问题(三)

Redis实战精讲-13小时彻底学会Redis 一、什么是分布式锁? 要介绍分布式锁,首先要提到与分布式锁相对应的是线程锁、进程锁。 l 线程锁:主要用来给方法、代码块加锁。当某个方法或代码使用锁,在同一时刻仅有一个线程执行该方法或该…...

grep!Linux系统下强大的文本搜索工具!

grep!Linux系统下强大的文本搜索工具! grep是一个强大的文本搜索工具,它可以在文件中查找包含指定字符串的行。grep的基本语法如下: grep [选项] "搜索字符串" 文件名其中,选项可以是以下几种:…...

(学习打卡1)重学Java设计模式之设计模式介绍

前言:听说有本很牛的关于Java设计模式的书——重学Java设计模式,然后买了(*^▽^*) 开始跟着小傅哥学Java设计模式吧,本文主要记录笔者的学习笔记和心得。 打卡!打卡! 设计模式介绍 一、设计模式是什么? …...

docker 部署教学版本

文章目录 一、docker使用场景及常用命令1)docker使用场景2)rocky8(centos8)安装 docker3)docker 常用命令补充常用命令 二、 单独部署每个镜像,部署spring 应用镜像推荐(2023-12-18)1、 安装使用 mysql1.1 …...

2023春季李宏毅机器学习笔记 05 :机器如何生成图像

资料 课程主页:https://speech.ee.ntu.edu.tw/~hylee/ml/2023-spring.phpGithub:https://github.com/Fafa-DL/Lhy_Machine_LearningB站课程:https://space.bilibili.com/253734135/channel/collectiondetail?sid2014800 一、图像生成常见模型…...

C#和C++存储 和 解析 bin 文件

C 解析 bin 文件 // C 解析 bin 文件 #include <stdio.h>int main() {FILE *file; // 定义文件指针file fopen("example.bin", "rb"); // 打开二进制文件&#xff08;只读模式&#xff09;if (file NULL) {printf("无法打开文件\n");re…...

【React系列】Redux(二)中间件

本文来自#React系列教程&#xff1a;https://mp.weixin.qq.com/mp/appmsgalbum?__bizMzg5MDAzNzkwNA&actiongetalbum&album_id1566025152667107329) 一. 中间件的使用 1.1. 组件中异步请求 在之前简单的案例中&#xff0c;redux中保存的counter是一个本地定义的数据…...

YOLOv8改进 | 2023Neck篇 | 利用Gold-YOLO改进YOLOv8对小目标检测

一、本文介绍 本文给大家带来的改进机制是Gold-YOLO利用其Neck改进v8的Neck,GoLd-YOLO引入了一种新的机制——信息聚集-分发(Gather-and-Distribute, GD)。这个机制通过全局融合不同层次的特征并将融合后的全局信息注入到各个层级中,从而实现更高效的信息交互和融合。这种…...

ubuntu环境安装配置nginx流程

今天分享ubuntu环境安装配置nginx流程 一、下载安装 1、检查是否已经安装 nginx -v 结果 2、安装 apt install nginx-core 过程 查看版本&#xff1a;nginx -v 安装路径&#xff1a;whereis nginx nginx文件安装完成之后的文件位置&#xff1a; /usr/sbin/nginx&#xf…...

【LMM 010】MiniGPT-v2:使用独特的标识符实现视觉语言多任务学习的统一的多模态大模型

论文标题&#xff1a;MiniGPT-v2: Large Language Model As a Unified Interface for Vision-Language Multi-task Learning 论文作者&#xff1a;Jun Chen, Deyao Zhu, Xiaoqian Shen, Xiang Li, Zechun Liu, Pengchuan Zhang, Raghuraman Krishnamoorthi, Vikas Chandra, Yun…...

人工智能如何重塑金融服务业

在体验优先的世界中识别金融服务业中的AI使用场景 人工智能&#xff08;AI&#xff09;作为主要行业的大型组织的重要业务驱动力&#xff0c;持续受到关注。众所周知&#xff0c;传统金融服务业在采用新技术方面相对滞后&#xff0c;一些组织使用的还是上世纪50年代和60年代发…...

Iterable 对象转换为 Stream 对象

在 Java 8 中&#xff0c;可以使用 Stream API 来对集合进行操作。要将 Iterable 对象转换为 Stream 对象&#xff0c;可以使用 StreamSupport 类的 stream() 方法。具体来说&#xff0c;可以按照以下步骤进行转换&#xff1a; 调用 Spliterators.spliteratorUnknownSize(iter…...

基于Java+SpringBoot+vue+elementUI私人健身教练预约管理系统设计实现

基于JavaSpringBootvueelementUI私人健身教练预约管理系统设计实现 欢迎点赞 收藏 ⭐留言 文末获取源码联系方式 文章目录 基于JavaSpringBootvueelementUI私人健身教练预约管理系统设计实现一、前言介绍&#xff1a;二、系统设计&#xff1a;2.1 性能需求分析2.2 B/S架构&…...

2024,启动(回顾我的2023)

零.前言 打开博客想写个年度总结&#xff0c;发现已经半年没有更新文章了&#xff0c;排名从几千掉到了几万&#xff0c;不过数据量还是不错的。 时间过得可真快&#xff0c;2023年是充满动荡的一年&#xff0c;上半年gpt横空出世&#xff0c;下半年各种翻车暴雷吃瓜吃到嘴软…...

Web网页开发-盒模型-笔记

1.CSS的三种显示方式 (1)块级元素:标签所占区域默认为一行 特点&#xff1a;一行一个 可设宽高 (2)行内元素&#xff1a;标签所占区域由内容顶开&#xff0c;行内元素无法使用text-align 特点&#xff1a;一行多个 不可设宽高&#xff0c;margin上下和padding上下都不能改变位…...

Java打成压缩包的方法汇总

文章目录 1.将指定目录下的文件打包成 .zip2.将指定目录下的文件打包成 .tar.gz3.将指定目录下的文件打包成 .tar4.将指定目录下的文件打包成 .rar5.生成若干个txt并打包到zip中 1.将指定目录下的文件打包成 .zip 代码示例&#xff1a; import java.io.*; import java.util.z…...

2023年第2季社区Task挑战赛贡献者榜单

基于FISCO BCOS及Weldentity&#xff0c;实现SSO单点登录服务&#xff1b;提供食品溯源、电商运费险7天退保、电子病历等智能合约库业务场景案例&#xff1b;基于FISCO BCOS更新游戏体验&#xff1b;体验并分析解读最新发布的分布式数据协作管理解决方案DDCMS&#xff0c;提供相…...

CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型

CVPR 2025 | MIMO&#xff1a;支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题&#xff1a;MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者&#xff1a;Yanyuan Chen, Dexuan Xu, Yu Hu…...

QMC5883L的驱动

简介 本篇文章的代码已经上传到了github上面&#xff0c;开源代码 作为一个电子罗盘模块&#xff0c;我们可以通过I2C从中获取偏航角yaw&#xff0c;相对于六轴陀螺仪的yaw&#xff0c;qmc5883l几乎不会零飘并且成本较低。 参考资料 QMC5883L磁场传感器驱动 QMC5883L磁力计…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件

今天呢&#xff0c;博主的学习进度也是步入了Java Mybatis 框架&#xff0c;目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学&#xff0c;希望能对大家有所帮助&#xff0c;也特别欢迎大家指点不足之处&#xff0c;小生很乐意接受正确的建议&…...

【位运算】消失的两个数字(hard)

消失的两个数字&#xff08;hard&#xff09; 题⽬描述&#xff1a;解法&#xff08;位运算&#xff09;&#xff1a;Java 算法代码&#xff1a;更简便代码 题⽬链接&#xff1a;⾯试题 17.19. 消失的两个数字 题⽬描述&#xff1a; 给定⼀个数组&#xff0c;包含从 1 到 N 所有…...

大学生职业发展与就业创业指导教学评价

这里是引用 作为软工2203/2204班的学生&#xff0c;我们非常感谢您在《大学生职业发展与就业创业指导》课程中的悉心教导。这门课程对我们即将面临实习和就业的工科学生来说至关重要&#xff0c;而您认真负责的教学态度&#xff0c;让课程的每一部分都充满了实用价值。 尤其让我…...

怎么让Comfyui导出的图像不包含工作流信息,

为了数据安全&#xff0c;让Comfyui导出的图像不包含工作流信息&#xff0c;导出的图像就不会拖到comfyui中加载出来工作流。 ComfyUI的目录下node.py 直接移除 pnginfo&#xff08;推荐&#xff09;​​ 在 save_images 方法中&#xff0c;​​删除或注释掉所有与 metadata …...

goreplay

1.github地址 https://github.com/buger/goreplay 2.简单介绍 GoReplay 是一个开源的网络监控工具&#xff0c;可以记录用户的实时流量并将其用于镜像、负载测试、监控和详细分析。 3.出现背景 随着应用程序的增长&#xff0c;测试它所需的工作量也会呈指数级增长。GoRepl…...

【大模型】RankRAG:基于大模型的上下文排序与检索增强生成的统一框架

文章目录 A 论文出处B 背景B.1 背景介绍B.2 问题提出B.3 创新点 C 模型结构C.1 指令微调阶段C.2 排名与生成的总和指令微调阶段C.3 RankRAG推理&#xff1a;检索-重排-生成 D 实验设计E 个人总结 A 论文出处 论文题目&#xff1a;RankRAG&#xff1a;Unifying Context Ranking…...

李沐--动手学深度学习--GRU

1.GRU从零开始实现 #9.1.2GRU从零开始实现 import torch from torch import nn from d2l import torch as d2l#首先读取 8.5节中使用的时间机器数据集 batch_size,num_steps 32,35 train_iter,vocab d2l.load_data_time_machine(batch_size,num_steps) #初始化模型参数 def …...

mcts蒙特卡洛模拟树思想

您这个观察非常敏锐&#xff0c;而且在很大程度上是正确的&#xff01;您已经洞察到了MCTS算法在不同阶段的两种不同行为模式。我们来把这个关系理得更清楚一些&#xff0c;您的理解其实离真相只有一步之遥。 您说的“select是在二次选择的时候起作用”&#xff0c;这个观察非…...