LLM之RAG实战(十一)| 使用Mistral-7B和Langchain搭建基于PDF文件的聊天机器人
在本文中,使用LangChain、HuggingFaceEmbeddings和HuggingFace的Mistral-7B LLM创建一个简单的Python程序,可以从任何pdf文件中回答问题。
一、LangChain简介
LangChain是一个在语言模型之上开发上下文感知应用程序的框架。LangChain使用带prompt和few-shot示例的LLM来提供相关响应和推理。LangChain擅长文档问答、聊天机器人、分析结构化数据等。LangChain提供方便处理LLM的抽象组件及其实现,还为更高级别的任务提供组件Chain。
安装langchain:
pip install langchain
LangChain中的模块:Model I/O(模型I/O), Retrieval(检索), Chains(链), Agents(代理), Memory(记忆), Callbacks(回调)
1.1 模型I/O模块
模型I/O是应用程序的核心元素。使用LangChain,可以使用任何大语言模型。这个接口需要三个组件:大语言模型、提示和输出解析器。
LangChain提供了许多类和函数来构建提示,为各种任务提供现成的提示模板,也可以自定义提示模板。
LangChain可以使用LLM,也可以使用以聊天消息列表为输入并返回聊天聊天消息。它可以与许多LLM一起工作,包括OpenAI LLMs和开源LLM。
输出解析器用于构建从LLM接收的响应,PydanticOutputParser是LangChain中输出解析器的主要类型。
1.2 检索模块
检索模块实现了检索增强生成(RAG),可以访问大模型训练数据之外的用户私有数据。检索步骤包括以下几步:加载数据、转换数据、创建或获取嵌入、存储嵌入和检索嵌入。LangChain拥有大约100个文档加载器,可以读取主要的文档格式,比如CSV、HTML、pdf、代码等。它可以使用不同的算法转换数据。LangChain集成了超过25个嵌入模型和超过50家向量数据库。
1.3 链条模块
复杂的应用程序通常需要组合多个LLM来完成。LangChain提供了Chain功能,可以集成多个LLM,Chain也可以调用其他Chain。
1.4 代理模块
代理也是一种Chain,负责决定下一步动作。代理由一个语言模型和一个提示组成,它需要以下输入:可用工具列表、用户输入和历史执行信息(如果有的话)。代理cals的功能被称为“工具”。代理使用LLM来决定要采取的操作和顺序。操作包括——使用工具,观察工具的输出,向用户返回响应。
1.5 记忆模块
记忆模块使系统能够记住过去的信息,这在对话机器人中非常重要。
1.6 回调模块
回调机制允许用户使用API的“回调”参数返回LLM应用程序不同阶段的信息,比如用于日志记录、监控、流式传输等。
二、Mistral-7B
Mistral-7B是一个强大的语言模型(目前是开源的),具有73亿个参数,性能优于很多参数量更高的大模型。它可以下载以供离线使用,也可以在云中使用或从HuggingFace下载。使用langchain中的HuggingFaceHub,可以使用以下代码加载并使用Mistral-7B:
repo_id = "mistralai/Mistral-7B-v0.1"
llm = HuggingFaceHub(huggingfacehub_api_token='your huggingface access token here',
repo_id=repo_id, model_kwargs={"temperature":0.2, "max_new_tokens":50})
三、HuggingFace Embedding
在处理文本、图像、音频、视频、文档等数据时,通常首先会进行embedding把他们表示成数字类型,这样便于神经网络处理,embedding不仅仅是一种数字表示,它也可以捕捉数据的上下文语义信息。
HuggingFace提供了Sentence Transformers模型可以进行embedding,安装如下所示:
pip install -U sentence-transformers
然后使用它加载一个预先训练好的模型来对文本句子进行编码。
四、chroma向量存储
chroma是一个开源的嵌入数据库(矢量存储),用于创建、存储、检索和进行嵌入的语义搜索。安装如下:
pip install chroma
它允许用户连接到chroma客户端,创建一个集合,将带有元数据和id的文档添加到集合(此步骤创建嵌入),然后查询此集合(语义检索)。
五、pypdf库
pypdf库可以读取、拆分、合并、裁剪、转换pdf文件的页面,添加自定义数据,更改查看选项,为pdf文件添加密码,从pdf文件中检索文本和元数据。安装如下所示:
pip install pypdf
要将pypdf与AES加密或解密一起使用,请安装额外的依赖项:
pip install pypdf[crypto]
六、实现代码:
# Install dependencies
!pip install huggingface_hub
!pip install chromadb
!pip install langchain
!pip install pypdf
!pip install sentence-transformers
# import required libraries
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.llms import HuggingFaceHub
from langchain.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
# Load the pdf file and split it into smaller chunks
loader = PyPDFLoader('report.pdf')
documents = loader.load()
# Split the documents into smaller chunks
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_documents(documents)
# We will use HuggingFace embeddings
embeddings = HuggingFaceEmbeddings()
#Using Chroma vector database to store and retrieve embeddings of our text
db = Chroma.from_documents(texts, embeddings)
retriever = db.as_retriever(search_kwargs={'k': 2})
# We are using Mistral-7B for this question answering
repo_id = "mistralai/Mistral-7B-v0.1"
llm = HuggingFaceHub(huggingfacehub_api_token='your huggingface access token here',
repo_id=repo_id, model_kwargs={"temperature":0.2, "max_new_tokens":50})
# Create the Conversational Retrieval Chain
qa_chain = ConversationalRetrievalChain.from_llm(llm, retriever,return_source_documents=True)
#We will run an infinite loop to ask questions to LLM and retrieve answers untill the user wants to quit
import sys
chat_history = []
while True:
query = input('Prompt: ')
#To exit: use 'exit', 'quit', 'q', or Ctrl-D.",
if query.lower() in ["exit", "quit", "q"]:
print('Exiting')
sys.exit()
result = qa_chain({'question': query, 'chat_history': chat_history})
print('Answer: ' + result['answer'] + '\n')
chat_history.append((query, result['answer']))
至此,基于PDF的聊天机器人就搭建好了,你可以从一个长而难的pdf中回答你的所有问题。Just do it!
参考文献:
[1] https://medium.com/@nimritakoul01/chat-with-your-pdf-files-using-mistral-7b-and-langchain-f3be9363301c
[2] https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fmedium.com%2F%40woyera%2Fhow-to-chat-with-your-pdf-using-python-llama-2-41df80c4e674
[3] https://www.shakudo.io/blog/build-pdf-bot-open-source-llms
相关文章:

LLM之RAG实战(十一)| 使用Mistral-7B和Langchain搭建基于PDF文件的聊天机器人
在本文中,使用LangChain、HuggingFaceEmbeddings和HuggingFace的Mistral-7B LLM创建一个简单的Python程序,可以从任何pdf文件中回答问题。 一、LangChain简介 LangChain是一个在语言模型之上开发上下文感知应用程序的框架。LangChain使用带prompt和few-…...
VLOOKUP的使用方法
VLOOKUP是Excel中一个非常有用的函数,用于在一个表格或范围中查找某个值,并返回该值所在行或列的相应数据。 VLOOKUP函数的基本语法如下: VLOOKUP(lookup_value, table_array, col_index_num, [range_lookup])lookup_value:要查…...

数据加密、端口管控、行为审计、终端安全、整体方案解决提供商
PC端访问地址: https://isite.baidu.com/site/wjz012xr/2eae091d-1b97-4276-90bc-6757c5dfedee 以下是关于这几个概念的解释: 数据加密:这是一种通过加密算法和密钥将明文转换为密文,以及通过解密算法和解密密钥将密文恢复为明文…...

编码器原理详解
编码器 什么是编码器 编码器可以用来将信息编码成为二进制代码,有点类似于取代号,人为的将二进制代码与对应的信息联系起来。 如下图所示: 假设有这三种情况会发生,且每次只发生一种情况 为了给这三种情况做一个区分ÿ…...

linux下docker搭建mysql8
1:环境信息 centos 7,mysql8 安装docker环境 2.创建mysql容器 2.1 拉取镜像 docker pull mysql:8.0.23 2.2 查询镜像拉取成功 docker images 2.3 创建挂载的目录文件 mkdir /usr/mysql8/conf mkdir /usr/mysql8/data ##给data文件赋予操作权限 chmod 777 /…...

书生·浦语大模型实战1
书生浦语大模型全链路开源体系 视频链接:书生浦语大模型全链路开源体系_哔哩哔哩_bilibili 大模型之所以能收到这么高的关注度,一个重要原因是大模型是发展通用人工智能的重要途径 深度信念网络: (1)又被称为贝叶斯网…...

前端JS加密对抗由浅入深-1
前言: 本文主要讲解,针对前端加密数据传输站点,如何进行动态调试以获取加密算法、秘钥,本次实验不涉及漏洞挖掘,仅为学习演示,环境为本地搭建环境 此次站点加密方式为AES加密方式,现如今越来越…...
八股文打卡day17——计算机网络(17)
面试题:拥塞控制是怎么实现的? 我的回答: 1.慢启动 在连接刚建立的时候,会缓慢调大滑动窗口的大小,从而加大网络传输速率,避免速率太快,造成拥塞。 2.拥塞避免 慢启动之后,会进入拥…...
Java-经典算法-logcat获取数据
1 需求 2 语法 3.1 示例:打印本次查询数据 import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader;/*** 功能:adb logcat -b main -s PRIVA_LOG -d*/ public class Test {public …...

APache 网页优化
技能目标: 掌握 Apache 网页压缩 掌握 Apache 网页缓存 掌握 Apache 网页防盗链 掌握 Apache 隐藏版本信息 4.1 网页压缩与缓存 在使用 Apache 作为 Web 服务器的过程中,只有对 Apache 服务器进行适当的优化配 置&…...

C语言实现关键字匹配算法(复制即用)
文章目录 前言功能要求运行截图全部代码 前言 无套路,均已上机通过,求个关注求个赞,提供答疑解惑服务。 功能要求 一份C源代码存储在一个文本文件中,请统计该文件中关键字出现的频度,并按此频度对关键字进行排序。要…...

【大数据】安装 Zookeeper 单机版
安装 Zookeeper 单机版 下面安装 Zookeeper,由于它是 Apache 的一个顶级项目,所以域名是 zookeeper.apache.org,所有 Apache 的顶级项目的官网都是以项目名 .apache.org 来命名的。 点击 Download 即可下载,这里我们选择的版本是 …...

Django 快速整合 Swagger:实用步骤和最佳实践
Django ,作为 Python 编写的一个优秀的开源 Web 应用框架,特别适用于快速开发的团队。对于很多场景来说,我们需要一份 API 文档,好处实在太多了: 提高开发效率:开发者可以基于 API 文档 快速学习和尝试 AP…...
C++ cstdio
头文件 <cstdio> 是 C 中的标准输入输出库(C Standard Input and Output Library)头文件,它提供了一系列的输入输出函数。以下是其中一些主要的函数: 输入函数: scanf: 格式化输入函数,用于从标准输入…...
昇腾多卡通信教程【配置网络检测对象IP】
无法通信会出现的错误如下 一、网络健康状态报错 命令原型 hccn_tool [-i %d] -netdetect -s [address %s]命令功能 本功能支持用户执行命令获取网络健康状态(本端与所配置的检测IP之间的连通状态),用户可指定上报的状态信息名称。 状态信…...
PKI 公钥基础设施,公钥私钥,信息摘要,数字签名,数字证书
PKI 公钥基础设施 https 基于 PKI 技术。PKI(Public Key Infrastructure,公钥基础设施)是一种安全体系结构,用于管理数字证书和密钥对,以确保安全的数据传输和身份验证。PKI 采用了公钥加密技术,其中每个实…...

企业Aspera替代方案有哪些推荐
随着企业数据量的不断增加,数据传输和共享成为了一个重要的问题。Aspera是一款高性能、低延迟的数据传输工具,但是它并不是万能的,随着数据量的不断增大,也有一些企业需要寻找Aspera的替代方案。本文将介绍三种常用的企业Aspera替…...

vue3 vuedraggable draggable element must have an item slot
vue3vite 看官网使用这种<template #item“{ element }”> <draggablev-model"myArray"start"onStart"end"onEnd":sort"false"item-key"id"draggable".item"handle".mover" ><template…...

如何缓解BOT攻击?分享灵活准确的防御之道
BOT流量在所有互联网流量中的占比过半,而且存在好坏之分。其中“好”的BOT,比如在互联网上搜索和查找内容的BOT,它们是我们不可或缺的帮手。恶意的BOT进行信息数据爬取、薅羊毛等攻击行为,正损害着企业和用户的利益。专业数据统计…...
了解JavaScript的执行环境及作用域
一、执行环境 执行环境定义了变量或函数有权访问的其他数据,决定了它们的各自行为。每个执行环境都有一个与之关联的变量对象,环境中定义的所有变量和函数都保存在这个对象中。虽然我们无法访问这个对象,但是解析器在处理数据时会在后台使用它…...
后进先出(LIFO)详解
LIFO 是 Last In, First Out 的缩写,中文译为后进先出。这是一种数据结构的工作原则,类似于一摞盘子或一叠书本: 最后放进去的元素最先出来 -想象往筒状容器里放盘子: (1)你放进的最后一个盘子(…...

2025年能源电力系统与流体力学国际会议 (EPSFD 2025)
2025年能源电力系统与流体力学国际会议(EPSFD 2025)将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会,EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...
c++ 面试题(1)-----深度优先搜索(DFS)实现
操作系统:ubuntu22.04 IDE:Visual Studio Code 编程语言:C11 题目描述 地上有一个 m 行 n 列的方格,从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子,但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...

智能在线客服平台:数字化时代企业连接用户的 AI 中枢
随着互联网技术的飞速发展,消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁,不仅优化了客户体验,还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用,并…...
数据链路层的主要功能是什么
数据链路层(OSI模型第2层)的核心功能是在相邻网络节点(如交换机、主机)间提供可靠的数据帧传输服务,主要职责包括: 🔑 核心功能详解: 帧封装与解封装 封装: 将网络层下发…...

ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...

IT供电系统绝缘监测及故障定位解决方案
随着新能源的快速发展,光伏电站、储能系统及充电设备已广泛应用于现代能源网络。在光伏领域,IT供电系统凭借其持续供电性好、安全性高等优势成为光伏首选,但在长期运行中,例如老化、潮湿、隐裂、机械损伤等问题会影响光伏板绝缘层…...

(转)什么是DockerCompose?它有什么作用?
一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用,而无需手动一个个创建和运行容器。 Compose文件是一个文本文件,通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...
Caliper 配置文件解析:config.yaml
Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...

Java面试专项一-准备篇
一、企业简历筛选规则 一般企业的简历筛选流程:首先由HR先筛选一部分简历后,在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如:Boss直聘(招聘方平台) 直接按照条件进行筛选 例如:…...