当前位置: 首页 > news >正文

LLM之RAG实战(十一)| 使用Mistral-7B和Langchain搭建基于PDF文件的聊天机器人

    

       在本文中,使用LangChain、HuggingFaceEmbeddings和HuggingFace的Mistral-7B LLM创建一个简单的Python程序,可以从任何pdf文件中回答问题。

一、LangChain简介

        LangChain是一个在语言模型之上开发上下文感知应用程序的框架。LangChain使用带prompt和few-shot示例的LLM来提供相关响应和推理。LangChain擅长文档问答、聊天机器人、分析结构化数据等。LangChain提供方便处理LLM的抽象组件及其实现,还为更高级别的任务提供组件Chain。

安装langchain:

pip install langchain

LangChain中的模块Model I/O(模型I/ORetrieval(检索Chains(), Agents(代理), Memory(记忆), Callbacks(回调)

1.1 模型I/O模块

      模型I/O是应用程序的核心元素。使用LangChain,可以使用任何大语言模型。这个接口需要三个组件:大语言模型提示输出解析器

       LangChain提供了许多函数来构建提示,为各种任务提供现成的提示模板,也可以自定义提示模板。

       LangChain可以使用LLM,也可以使用以聊天消息列表为输入并返回聊天聊天消息。它可以与许多LLM一起工作,包括OpenAI LLMs和开源LLM。

      输出解析器用于构建从LLM接收的响应,PydanticOutputParser是LangChain中输出解析器的主要类型。

1.2 检索模块

       检索模块实现了检索增强生成(RAG),可以访问大模型训练数据之外的用户私有数据。检索步骤包括以下几步:加载数据、转换数据、创建或获取嵌入、存储嵌入和检索嵌入。LangChain拥有大约100个文档加载器,可以读取主要的文档格式,比如CSV、HTML、pdf、代码等。它可以使用不同的算法转换数据。LangChain集成了超过25个嵌入模型和超过50家向量数据库。

1.3 链条模块

       复杂的应用程序通常需要组合多个LLM来完成。LangChain提供了Chain功能,可以集成多个LLM,Chain也可以调用其他Chain。

1.4 代理模块

       代理也是一种Chain,负责决定下一步动作。代理由一个语言模型和一个提示组成,它需要以下输入:可用工具列表用户输入和历史执行信息(如果有的话)。代理cals的功能被称为“工具”。代理使用LLM来决定要采取的操作和顺序。操作包括——使用工具,观察工具的输出,向用户返回响应。

1.5 记忆模块

       记忆模块使系统能够记住过去的信息,这在对话机器人中非常重要。

1.6 回调模块

       回调机制允许用户使用API的“回调”参数返回LLM应用程序不同阶段的信息,比如用于日志记录、监控、流式传输等。

二、Mistral-7B

       Mistral-7B是一个强大的语言模型(目前是开源的),具有73亿个参数,性能优于很多参数量更高的大模型。它可以下载以供离线使用,也可以在云中使用或从HuggingFace下载。使用langchain中的HuggingFaceHub,可以使用以下代码加载并使用Mistral-7B:

repo_id = "mistralai/Mistral-7B-v0.1"llm = HuggingFaceHub(huggingfacehub_api_token='your huggingface access token here',                      repo_id=repo_id, model_kwargs={"temperature":0.2, "max_new_tokens":50})

三、HuggingFace Embedding

       在处理文本、图像、音频、视频、文档等数据时,通常首先会进行embedding把他们表示成数字类型,这样便于神经网络处理,embedding不仅仅是一种数字表示,它也可以捕捉数据的上下文语义信息。

       HuggingFace提供了Sentence Transformers模型可以进行embedding,安装如下所示:

pip install -U sentence-transformers

         然后使用它加载一个预先训练好的模型来对文本句子进行编码。

四、chroma向量存储

       chroma是一个开源的嵌入数据库(矢量存储),用于创建、存储、检索和进行嵌入的语义搜索。安装如下:

pip install chroma

       它允许用户连接到chroma客户端,创建一个集合,将带有元数据和id的文档添加到集合(此步骤创建嵌入),然后查询此集合(语义检索)。

五、pypdf库

       pypdf库可以读取、拆分、合并、裁剪、转换pdf文件的页面,添加自定义数据,更改查看选项,为pdf文件添加密码,从pdf文件中检索文本和元数据。安装如下所示:

pip install pypdf

         要将pypdf与AES加密或解密一起使用,请安装额外的依赖项:

pip install pypdf[crypto]

六、实现代码:

# Install dependencies!pip install huggingface_hub!pip install chromadb!pip install langchain!pip install pypdf!pip install sentence-transformers
# import required librariesfrom langchain.document_loaders import PyPDFLoaderfrom langchain.text_splitter import CharacterTextSplitterfrom langchain.embeddings import HuggingFaceEmbeddingsfrom langchain.llms import HuggingFaceHubfrom langchain.vectorstores import Chromafrom langchain.chains import ConversationalRetrievalChain
# Load the pdf file and split it into smaller chunksloader = PyPDFLoader('report.pdf')documents = loader.load()# Split the documents into smaller chunks text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)texts = text_splitter.split_documents(documents)
# We will use HuggingFace embeddings embeddings = HuggingFaceEmbeddings()
#Using Chroma vector database to store and retrieve embeddings of our textdb = Chroma.from_documents(texts, embeddings)retriever = db.as_retriever(search_kwargs={'k': 2})
# We are using Mistral-7B for this question answering repo_id = "mistralai/Mistral-7B-v0.1"llm = HuggingFaceHub(huggingfacehub_api_token='your huggingface access token here',                      repo_id=repo_id, model_kwargs={"temperature":0.2, "max_new_tokens":50})
# Create the Conversational Retrieval Chainqa_chain = ConversationalRetrievalChain.from_llm(llm, retriever,return_source_documents=True)
#We will run an infinite loop to ask questions to LLM and retrieve answers untill the user wants to quitimport syschat_history = []while True:    query = input('Prompt: ')    #To exit: use 'exit', 'quit', 'q', or Ctrl-D.",    if query.lower() in ["exit", "quit", "q"]:        print('Exiting')        sys.exit()    result = qa_chain({'question': query, 'chat_history': chat_history})    print('Answer: ' + result['answer'] + '\n')    chat_history.append((query, result['answer']))

        至此,基于PDF的聊天机器人就搭建好了,你可以从一个长而难的pdf中回答你的所有问题。Just do it!

参考文献:

[1] https://medium.com/@nimritakoul01/chat-with-your-pdf-files-using-mistral-7b-and-langchain-f3be9363301c

[2] https://colab.research.google.com/corgiredirector?site=https%3A%2F%2Fmedium.com%2F%40woyera%2Fhow-to-chat-with-your-pdf-using-python-llama-2-41df80c4e674

[3] https://www.shakudo.io/blog/build-pdf-bot-open-source-llms

相关文章:

LLM之RAG实战(十一)| 使用Mistral-7B和Langchain搭建基于PDF文件的聊天机器人

在本文中,使用LangChain、HuggingFaceEmbeddings和HuggingFace的Mistral-7B LLM创建一个简单的Python程序,可以从任何pdf文件中回答问题。 一、LangChain简介 LangChain是一个在语言模型之上开发上下文感知应用程序的框架。LangChain使用带prompt和few-…...

VLOOKUP的使用方法

VLOOKUP是Excel中一个非常有用的函数,用于在一个表格或范围中查找某个值,并返回该值所在行或列的相应数据。 VLOOKUP函数的基本语法如下: VLOOKUP(lookup_value, table_array, col_index_num, [range_lookup])lookup_value:要查…...

数据加密、端口管控、行为审计、终端安全、整体方案解决提供商

PC端访问地址: https://isite.baidu.com/site/wjz012xr/2eae091d-1b97-4276-90bc-6757c5dfedee 以下是关于这几个概念的解释: 数据加密:这是一种通过加密算法和密钥将明文转换为密文,以及通过解密算法和解密密钥将密文恢复为明文…...

编码器原理详解

编码器 什么是编码器 编码器可以用来将信息编码成为二进制代码,有点类似于取代号,人为的将二进制代码与对应的信息联系起来。 如下图所示: 假设有这三种情况会发生,且每次只发生一种情况 为了给这三种情况做一个区分&#xff…...

linux下docker搭建mysql8

1:环境信息 centos 7,mysql8 安装docker环境 2.创建mysql容器 2.1 拉取镜像 docker pull mysql:8.0.23 2.2 查询镜像拉取成功 docker images 2.3 创建挂载的目录文件 mkdir /usr/mysql8/conf mkdir /usr/mysql8/data ##给data文件赋予操作权限 chmod 777 /…...

书生·浦语大模型实战1

书生浦语大模型全链路开源体系 视频链接:书生浦语大模型全链路开源体系_哔哩哔哩_bilibili 大模型之所以能收到这么高的关注度,一个重要原因是大模型是发展通用人工智能的重要途径 深度信念网络: (1)又被称为贝叶斯网…...

前端JS加密对抗由浅入深-1

前言: 本文主要讲解,针对前端加密数据传输站点,如何进行动态调试以获取加密算法、秘钥,本次实验不涉及漏洞挖掘,仅为学习演示,环境为本地搭建环境 此次站点加密方式为AES加密方式,现如今越来越…...

八股文打卡day17——计算机网络(17)

面试题:拥塞控制是怎么实现的? 我的回答: 1.慢启动 在连接刚建立的时候,会缓慢调大滑动窗口的大小,从而加大网络传输速率,避免速率太快,造成拥塞。 2.拥塞避免 慢启动之后,会进入拥…...

Java-经典算法-logcat获取数据

1 需求 2 语法 3.1 示例:打印本次查询数据 import java.io.BufferedReader; import java.io.IOException; import java.io.InputStream; import java.io.InputStreamReader;/*** 功能:adb logcat -b main -s PRIVA_LOG -d*/ public class Test {public …...

APache 网页优化

技能目标: 掌握 Apache 网页压缩 掌握 Apache 网页缓存 掌握 Apache 网页防盗链 掌握 Apache 隐藏版本信息 4.1 网页压缩与缓存 在使用 Apache 作为 Web 服务器的过程中,只有对 Apache 服务器进行适当的优化配 置&…...

C语言实现关键字匹配算法(复制即用)

文章目录 前言功能要求运行截图全部代码 前言 无套路,均已上机通过,求个关注求个赞,提供答疑解惑服务。 功能要求 一份C源代码存储在一个文本文件中,请统计该文件中关键字出现的频度,并按此频度对关键字进行排序。要…...

【大数据】安装 Zookeeper 单机版

安装 Zookeeper 单机版 下面安装 Zookeeper,由于它是 Apache 的一个顶级项目,所以域名是 zookeeper.apache.org,所有 Apache 的顶级项目的官网都是以项目名 .apache.org 来命名的。 点击 Download 即可下载,这里我们选择的版本是 …...

Django 快速整合 Swagger:实用步骤和最佳实践

Django ,作为 Python 编写的一个优秀的开源 Web 应用框架,特别适用于快速开发的团队。对于很多场景来说,我们需要一份 API 文档,好处实在太多了: 提高开发效率:开发者可以基于 API 文档 快速学习和尝试 AP…...

C++ cstdio

头文件 <cstdio> 是 C 中的标准输入输出库&#xff08;C Standard Input and Output Library&#xff09;头文件&#xff0c;它提供了一系列的输入输出函数。以下是其中一些主要的函数&#xff1a; 输入函数&#xff1a; scanf: 格式化输入函数&#xff0c;用于从标准输入…...

昇腾多卡通信教程【配置网络检测对象IP】

无法通信会出现的错误如下 一、网络健康状态报错 命令原型 hccn_tool [-i %d] -netdetect -s [address %s]命令功能 本功能支持用户执行命令获取网络健康状态&#xff08;本端与所配置的检测IP之间的连通状态&#xff09;&#xff0c;用户可指定上报的状态信息名称。 状态信…...

PKI 公钥基础设施,公钥私钥,信息摘要,数字签名,数字证书

PKI 公钥基础设施 https 基于 PKI 技术。PKI&#xff08;Public Key Infrastructure&#xff0c;公钥基础设施&#xff09;是一种安全体系结构&#xff0c;用于管理数字证书和密钥对&#xff0c;以确保安全的数据传输和身份验证。PKI 采用了公钥加密技术&#xff0c;其中每个实…...

企业Aspera替代方案有哪些推荐

随着企业数据量的不断增加&#xff0c;数据传输和共享成为了一个重要的问题。Aspera是一款高性能、低延迟的数据传输工具&#xff0c;但是它并不是万能的&#xff0c;随着数据量的不断增大&#xff0c;也有一些企业需要寻找Aspera的替代方案。本文将介绍三种常用的企业Aspera替…...

vue3 vuedraggable draggable element must have an item slot

vue3vite 看官网使用这种<template #item“{ element }”> <draggablev-model"myArray"start"onStart"end"onEnd":sort"false"item-key"id"draggable".item"handle".mover" ><template…...

如何缓解BOT攻击?分享灵活准确的防御之道

BOT流量在所有互联网流量中的占比过半&#xff0c;而且存在好坏之分。其中“好”的BOT&#xff0c;比如在互联网上搜索和查找内容的BOT&#xff0c;它们是我们不可或缺的帮手。恶意的BOT进行信息数据爬取、薅羊毛等攻击行为&#xff0c;正损害着企业和用户的利益。专业数据统计…...

了解JavaScript的执行环境及作用域

一、执行环境 执行环境定义了变量或函数有权访问的其他数据&#xff0c;决定了它们的各自行为。每个执行环境都有一个与之关联的变量对象&#xff0c;环境中定义的所有变量和函数都保存在这个对象中。虽然我们无法访问这个对象&#xff0c;但是解析器在处理数据时会在后台使用它…...

Chapter03-Authentication vulnerabilities

文章目录 1. 身份验证简介1.1 What is authentication1.2 difference between authentication and authorization1.3 身份验证机制失效的原因1.4 身份验证机制失效的影响 2. 基于登录功能的漏洞2.1 密码爆破2.2 用户名枚举2.3 有缺陷的暴力破解防护2.3.1 如果用户登录尝试失败次…...

Flask RESTful 示例

目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题&#xff1a; 下面创建一个简单的Flask RESTful API示例。首先&#xff0c;我们需要创建环境&#xff0c;安装必要的依赖&#xff0c;然后…...

简易版抽奖活动的设计技术方案

1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...

基于Uniapp开发HarmonyOS 5.0旅游应用技术实践

一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架&#xff0c;支持"一次开发&#xff0c;多端部署"&#xff0c;可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务&#xff0c;为旅游应用带来&#xf…...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术&#xff0c;说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号&#xff08;调制&#xff09; 把信息从信号中抽取出来&am…...

python爬虫:Newspaper3k 的详细使用(好用的新闻网站文章抓取和解析的Python库)

更多内容请见: 爬虫和逆向教程-专栏介绍和目录 文章目录 一、Newspaper3k 概述1.1 Newspaper3k 介绍1.2 主要功能1.3 典型应用场景1.4 安装二、基本用法2.2 提取单篇文章的内容2.2 处理多篇文档三、高级选项3.1 自定义配置3.2 分析文章情感四、实战案例4.1 构建新闻摘要聚合器…...

【python异步多线程】异步多线程爬虫代码示例

claude生成的python多线程、异步代码示例&#xff0c;模拟20个网页的爬取&#xff0c;每个网页假设要0.5-2秒完成。 代码 Python多线程爬虫教程 核心概念 多线程&#xff1a;允许程序同时执行多个任务&#xff0c;提高IO密集型任务&#xff08;如网络请求&#xff09;的效率…...

C++使用 new 来创建动态数组

问题&#xff1a; 不能使用变量定义数组大小 原因&#xff1a; 这是因为数组在内存中是连续存储的&#xff0c;编译器需要在编译阶段就确定数组的大小&#xff0c;以便正确地分配内存空间。如果允许使用变量来定义数组的大小&#xff0c;那么编译器就无法在编译时确定数组的大…...

打手机检测算法AI智能分析网关V4守护公共/工业/医疗等多场景安全应用

一、方案背景​ 在现代生产与生活场景中&#xff0c;如工厂高危作业区、医院手术室、公共场景等&#xff0c;人员违规打手机的行为潜藏着巨大风险。传统依靠人工巡查的监管方式&#xff0c;存在效率低、覆盖面不足、判断主观性强等问题&#xff0c;难以满足对人员打手机行为精…...

在 Spring Boot 项目里,MYSQL中json类型字段使用

前言&#xff1a; 因为程序特殊需求导致&#xff0c;需要mysql数据库存储json类型数据&#xff0c;因此记录一下使用流程 1.java实体中新增字段 private List<User> users 2.增加mybatis-plus注解 TableField(typeHandler FastjsonTypeHandler.class) private Lis…...