当前位置: 首页 > news >正文

计算机网络实验(六):三层交换机实现VLAN间路由

一、实验名称:三层交换机实现VLAN间路由

二、实验原理

2.1. VLAN基本配置

在交换网络中,为了实现对物理网络的逻辑划分,引入了VLAN(虚拟局域网)的概念。VLAN通过将不同的设备划分到不同的虚拟网络中,实现了逻辑隔离。基本配置包括在交换机上创建VLAN、将端口划分到相应的VLAN,并设置端口的访问模式(Access Mode)或干道模式(Trunk Mode)。

2.2 Trunk的工作原理和配置方法

Trunk是用于在交换机之间传输多个VLAN信息的链路。在Trunk链路上,通过封装数据帧的方式,可以同时传输属于不同VLAN的数据。Trunk的配置包括在交换机端口上启用Trunk模式、选择合适的封装协议(如802.1Q)以及指定允许通过Trunk的VLAN。

2.3 三层交换的工作原理和配置方法

三层交换机结合了交换机和路由器的功能,能够在数据链路层和网络层之间进行转发。实现VLAN之间的互通,需要在三层交换机上配置SVI(Switch Virtual Interface)。SVI相当于为每个VLAN创建一个虚拟接口,并为该接口配置IP地址,使得三层交换机能够理解不同VLAN的IP网络并实现路由功能。直连路由是通过配置接口IP地址,使三层设备自动产生直连路由信息,从而实现对相邻网络的直接访问。

实验拓扑图

三、实验目的

1. 掌握如何在三层交换机上配置SVI端口,实现VLAN间的路由

四、实验内容

4.1

相关文章:

计算机网络实验(六):三层交换机实现VLAN间路由

一、实验名称:三层交换机实现VLAN间路由 二、实验原理 2.1. VLAN基本配置 在交换网络中,为了实现对物理网络的逻辑划分,引入了VLAN(虚拟局域网)的概念。VLAN通过将不同的设备划分到不同的虚拟网络中,实现了逻辑隔离。基本配置包括在交换机上创建VLAN、将端口划分到相应…...

Flutter中showModalBottomSheet的属性介绍和使用

在Flutter中,showModalBottomSheet是一个常用的工具,用于在屏幕底部显示模态底部面板。了解其属性将帮助您更好地定制和控制底部模态框的外观和行为。 showModalBottomSheet的常用属性 1. context: 类型: BuildContext描述: 表示当前构建上下文&#…...

机器学习 -- k近邻算法

场景 我学习Python的初衷是学习人工智能,满足现有的业务场景。所以必须要看看机器学习这一块。今天看了很久,做个总结。 机器学习分为深度学习和传统机器学习 深度学习 深度学习模型通常非常复杂,包含多层神经网络,每一层都包含…...

安全测试之SSRF请求伪造

前言 SSRF漏洞是一种在未能获取服务器权限时,利用服务器漏洞,由攻击者构造请求,服务器端发起请求的安全漏洞,攻击者可以利用该漏洞诱使服务器端应用程序向攻击者选择的任意域发出HTTP请求。 很多Web应用都提供了从其他的服务器上…...

php composer安装

引言 Composer 是 PHP 中的依赖管理工具。它允许您声明您的项目所依赖的库,并且它将为您管理(安装/更新)它们。 官网链接:Introduction - Composer 安装 要在当前目录中快速安装 Composer,请在终端中运行以下脚本。…...

【MyBatis】MyBatis基础操作

文章目录 前言注解方式书写 MyBatis打印 MyBatis 日志参数传递MyBatis 增加操作返回主键 MyBatis 删除操作MyBatis 修改操作MyBatis 查找操作1. 对查询结果进行别名2. Results注解3. 开启驼峰命名(推荐) XML 配置文件方法书写 MyBatis配置数据库的相关配…...

Automatic merge failed; fix conflicts and then commit the result.如何处理

当你在Git中遇到 “Automatic merge failed; fix conflicts and then commit the result.” 的错误时,这意味着你尝试合并两个分支时出现了冲突。Git无法自动解决这些冲突,因此需要你手动解决。以下是处理这种情况的步骤: 找出冲突文件: 运行…...

一文读懂 $mash 通证 “Fair Launch” 规则(幸运池玩法解读篇)

Solmash 是 Solana 生态中由社区主导的铭文资产 LaunchPad 平台,该平台旨在为 Solana 原生铭文项目,以及通过其合作伙伴 SoBit 跨链桥桥接到 Solana 的 Bitcoin 生态铭文项目提供更广泛的启动机会。有了 Solmash,将会有更多的 Solana 生态的铭…...

Qt3D QGeometryRenderer几何体渲染类使用说明

Qt3D中的QGeometryRenderer派生出来的几何体类包括: Qt3DExtras::QConeMesh, Qt3DExtras::QCuboidMesh, Qt3DExtras::QCylinderMesh, Qt3DExtras::QExtrudedTextMesh, Qt3DExtras::QPlaneMesh, Qt3DExtras::QSphereMesh, Qt3DExtras::QTorusMesh, and Qt3DRender::QMesh 有球…...

pandasDataFrame读和写csv文件

从.csv文件读数据 import pandas as pd# 从CSV文件中读取数据 train_df pd.read_csv("datasets/train01.csv") val_df pd.read_csv("datasets/val01.csv") test_df pd.read_csv("datasets/test01.csv")# 显示数据框的前几行,确保…...

力扣122. 买卖股票的最佳时机 II

动态规划 思路: 假设 dp[i][0] 是第 i 天手上没有股票时的最大利润, dp[i][1] 是第 i 天手上有 1 支股票的最大利润;dp[i][0] 的迁移状态为: dp[i - 1][0],前一天手上已经没有股票,没有发生交易&#xff1…...

Go语言断言和类型查询

Go语言断言和类型查询 1、类型断言 类型断言(Type Assertion)是一个使用在接口值上的操作,用于检查接口类型变量所持有的值是否实现了期望的接 口或者具体的类型。 在Go语言中类型断言的语法格式如下: // i.(TypeNname) value, ok : x.(T)其中&…...

02 Deep learning algorithm

Neural Networks target: inference(prediction)training my own modelpractical advice for building machine learning systemdecision Tress application: speech(语音识别) ----> images(计算机视觉)—> t…...

代码随想录算法训练营第二十四天 | 回溯算法

理论基础 代码随想录原文 什么是回溯法 回溯也可以叫做回溯搜索法,它是一种搜索的方式。 回溯是递归的副产品,只要有递归就会有回溯。 回溯法的效率 虽然回溯法很难,不好理解,但是回溯法并不是什么高效的算法。因为回溯的本…...

Spring Cloud Gateway 缓存区异常

目录 1、问题背景 2、分析源码过程 3、解决办法 最近在测试环境spring cloud gateway突然出现了异常,在这里记录一下,直接上干货 1、问题背景 测试环境spring cloud gateway遇到以下异常 DataBufferLimitException: Exceeded limit on max bytes t…...

Spring Boot依赖版本声明

链接 官网 Spring Boot文档官网:​​​​​​https://docs.spring.io/spring-boot/docs/https://docs.spring.io/spring-boot/docs/ Spring Boot 2.0.7.RELEASE Spring Boot 2.0.7.RELEASE reference相关:https://docs.spring.io/spring-boot/docs/2.…...

Java项目:109SpringBoot超市仓管系统

博主主页:Java旅途 简介:分享计算机知识、学习路线、系统源码及教程 文末获取源码 一、项目介绍 超市仓管系统基于SpringBootMybatis开发,系统使用shiro框架做权限安全控制,超级管理员登录系统后可根据自己的实际需求配角色&…...

【React系列】Redux(三) state如何管理

本文来自#React系列教程:https://mp.weixin.qq.com/mp/appmsgalbum?__bizMzg5MDAzNzkwNA&actiongetalbum&album_id1566025152667107329) 一. reducer拆分 1.1. reducer代码拆分 我们来看一下目前我们的reducer: function reducer(state ini…...

3D 纹理的综合指南

在线工具推荐:3D数字孪生场景编辑器 - GLTF/GLB材质纹理编辑器 - 3D模型在线转换 - Three.js AI自动纹理开发包 - YOLO 虚幻合成数据生成器 - 三维模型预览图生成器 - 3D模型语义搜索引擎 我们经常看到超现实主义的视频游戏和动画电影角色出现在屏幕上。他们皮肤上的…...

LLM之RAG实战(十一)| 使用Mistral-7B和Langchain搭建基于PDF文件的聊天机器人

在本文中,使用LangChain、HuggingFaceEmbeddings和HuggingFace的Mistral-7B LLM创建一个简单的Python程序,可以从任何pdf文件中回答问题。 一、LangChain简介 LangChain是一个在语言模型之上开发上下文感知应用程序的框架。LangChain使用带prompt和few-…...

微信小程序之bind和catch

这两个呢,都是绑定事件用的,具体使用有些小区别。 官方文档: 事件冒泡处理不同 bind:绑定的事件会向上冒泡,即触发当前组件的事件后,还会继续触发父组件的相同事件。例如,有一个子视图绑定了b…...

大型活动交通拥堵治理的视觉算法应用

大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...

CMake基础:构建流程详解

目录 1.CMake构建过程的基本流程 2.CMake构建的具体步骤 2.1.创建构建目录 2.2.使用 CMake 生成构建文件 2.3.编译和构建 2.4.清理构建文件 2.5.重新配置和构建 3.跨平台构建示例 4.工具链与交叉编译 5.CMake构建后的项目结构解析 5.1.CMake构建后的目录结构 5.2.构…...

Linux-07 ubuntu 的 chrome 启动不了

文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了,报错如下四、启动不了,解决如下 总结 问题原因 在应用中可以看到chrome,但是打不开(说明:原来的ubuntu系统出问题了,这个是备用的硬盘&a…...

leetcodeSQL解题:3564. 季节性销售分析

leetcodeSQL解题:3564. 季节性销售分析 题目: 表:sales ---------------------- | Column Name | Type | ---------------------- | sale_id | int | | product_id | int | | sale_date | date | | quantity | int | | price | decimal | -…...

《基于Apache Flink的流处理》笔记

思维导图 1-3 章 4-7章 8-11 章 参考资料 源码: https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作

一、上下文切换 即使单核CPU也可以进行多线程执行代码,CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短,所以CPU会不断地切换线程执行,从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP

编辑-虚拟网络编辑器-更改设置 选择桥接模式,然后找到相应的网卡(可以查看自己本机的网络连接) windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置,选择刚才配置的桥接模式 静态ip设置: 我用的ubuntu24桌…...

Go语言多线程问题

打印零与奇偶数(leetcode 1116) 方法1:使用互斥锁和条件变量 package mainimport ("fmt""sync" )type ZeroEvenOdd struct {n intzeroMutex sync.MutexevenMutex sync.MutexoddMutex sync.Mutexcurrent int…...

Python 训练营打卡 Day 47

注意力热力图可视化 在day 46代码的基础上,对比不同卷积层热力图可视化的结果 import torch import torch.nn as nn import torch.optim as optim from torchvision import datasets, transforms from torch.utils.data import DataLoader import matplotlib.pypl…...