深入理解Java中的多线程编程与并发控制
当谈论到 Java 编程语言时,多线程编程和并发控制是其中最重要的话题之一。Java 在多线程领域有着强大的支持和丰富的工具集,允许开发人员利用并发性来提高程序性能和效率。本文将深入探讨 Java 中的多线程编程和并发控制,包括线程的创建、同步、锁、并发容器以及常见的并发问题和解决方法。
1. 线程的创建
在 Java 中,线程可以通过继承 Thread 类或实现 Runnable 接口来创建。下面是两种创建线程的示例:
// 通过继承 Thread 类创建线程
class MyThread extends Thread {public void run() {// 线程执行的代码}
}// 通过实现 Runnable 接口创建线程
class MyRunnable implements Runnable {public void run() {// 线程执行的代码}
}public class Main {public static void main(String[] args) {MyThread thread1 = new MyThread();thread1.start();MyRunnable runnable = new MyRunnable();Thread thread2 = new Thread(runnable);thread2.start();}
}
通过以上示例可见,无论是继承 Thread 类还是实现 Runnable 接口,最终都需要在 run() 方法中定义线程要执行的代码。然后,通过 start() 方法启动线程。
2. 同步和锁
在多线程环境下,当多个线程同时访问共享资源时,可能会导致数据不一致或错误。为了避免这种情况,Java 提供了同步机制来控制对共享资源的访问,最常见的方式是使用 synchronized 关键字和 ReentrantLock。
2.1 使用 synchronized 关键字
synchronized 关键字可以应用于方法或代码块,确保同一时间只有一个线程可以访问被保护的代码段,示例如下:
class Counter {private int count = 0;public synchronized void increment() {count++;}
}
2.2 使用 ReentrantLock
ReentrantLock 是一个灵活的锁实现,允许更精细的控制锁定过程。使用 ReentrantLock 需要在 try-finally 块中手动释放锁,示例如下:
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;class Counter {private int count = 0;private Lock lock = new ReentrantLock();public void increment() {lock.lock();try {count++;} finally {lock.unlock();}}
}
3. 并发容器
Java 提供了许多并发容器来支持在多线程环境下安全地操作集合。例如,ConcurrentHashMap、CopyOnWriteArrayList、BlockingQueue 等都是线程安全的集合类,可以在并发环境中使用。
3.1 ConcurrentHashMap
ConcurrentHashMap 是线程安全的哈希表实现,支持高并发的读操作和一定程度的并发写操作,示例如下:
ConcurrentHashMap<String, Integer> map = new ConcurrentHashMap<>();
map.put("key", 1);
int value = map.get("key");
3.2 CopyOnWriteArrayList
CopyOnWriteArrayList 是一个线程安全的动态数组,它在进行修改操作(add、set 等)时会创建一个新的拷贝,适用于读操作频繁、写操作较少的场景。
CopyOnWriteArrayList<String> list = new CopyOnWriteArrayList<>();
list.add("item");
4. 并发问题与解决方法
在多线程编程中,常见的并发问题包括竞态条件、死锁、数据不一致等。为了解决这些问题,可以采用以下方法:
使用同步机制:如 synchronized 关键字、ReentrantLock 来保护共享资源的访问。
避免死锁:尽量避免使用多个锁,按固定顺序获取锁,以减少死锁的可能性。
使用并发容器:如 ConcurrentHashMap、CopyOnWriteArrayList 等,减少手动同步的需求。
避免可变状态:尽量使用不可变对象或者不可变对象的方式来减少共享数据的修改。
结语
Java 中的多线程编程和并发控制是一个广阔的领域,本文只是介绍了其中的一部分内容。在实际开发中,合理地利用多线程和并发机制可以提高程序的性能和效率,但也需要注意并发问题和线程安全性。深入理解并掌握多线程编程是 Java 开发人员必备的技能之一。通过合适的同步机制、并发容器以及对常见并发问题的处理,可以更好地编写出高效、稳定的多线程程序。
相关文章:
深入理解Java中的多线程编程与并发控制
当谈论到 Java 编程语言时,多线程编程和并发控制是其中最重要的话题之一。Java 在多线程领域有着强大的支持和丰富的工具集,允许开发人员利用并发性来提高程序性能和效率。本文将深入探讨 Java 中的多线程编程和并发控制,包括线程的创建、同步…...
提供10个mysql的实例和思路
学生信息管理系统 学生表(id, name, gender, age, class_id)班级表(id, name)思路:通过学生表和班级表进行关联,可以实现学生信息的查询、添加、修改、删除等操作。 订单管理系统 订单表(id, us…...

FPGA项目(14)——基于FPGA的数字秒表设计
1.功能设计 设计内容及要求: 1.秒表最大计时范围为99分59. 99秒 2.6位数码管显示,分辨率为0.01秒 3.具有清零、启动计时、暂停及继续计时等功能 4.控制操作按键不超过二个。 2.设计思路 所采用的时钟为50M,先对时钟进行分频,得到100HZ频率…...
浅谈指数移动平均(ema)
经常在各种代码中看到指数移动平均(比如我专注的网络传输领域),但却不曾想到它就是诠释世界的方法,我们每个人都在被这种方式 “平均”… 今天说说指数移动平均(或移动指数平均,Exponential Moving Average)。 能查到的资料都侧重于其数学形…...

1-并发编程线程基础
什么是线程 在讨论什么是线程前有必要先说下什么是进程,因为线程是进程中的一个实体,线程本身是不会独立存在的。 进程是代码在数据集合上的一次运行活动,是系统进行资源分配和调度的基本单位,线程则是进程的一个执行路径&#…...

vue中动态出来返回的时间秒数,在多少范围显示多少秒,多少范围显示分,小时等等
在Vue中,你可以使用计算属性(computed property)或过滤器(filter)来根据动态返回的时间秒数来显示不同的时间单位,比如秒、分、小时等等。 下面是一个使用计算属性的示例: <template>&l…...
English: go through customs
文章目录 常见单词机场指示登机和中转降落以及公共服务签证篇出/入境卡篇入境英语会话篇 常见单词 customs: 海关 (kʌstəmz)cash: 现金 (kʃ)passport: 护照 (pspɔːt)luggage/baggage: 行李 (lʌɡɪdʒ/ˈbɡɪdʒ)Exchange: 换钱 (ɪks’tʃeɪndʒ)airport: 飞机场 (ɛ…...

Nginx 多端口部署多站点
目录 1.进行nginx.conf 2.复制粘贴 3.修改端口及站点根目录 4. 网站上传 1.进行nginx.conf 在 nginx 主要配置文件 nginx.conf 中,server 是负责一个网站配置的,我们想要多个端口访问的话,可以复制多个 server 先进入到 nginx.conf 中 …...

从零开始配置kali2023环境:配置jupyter的多内核环境
在kali2023上面尝试用anaconda3,anaconda2安装实现配置jupyter的多内核环境时出现各种问题,现在可以通过镜像方式解决 1. 搜索镜像 ┌──(holyeyes㉿kali2023)-[~] └─$ sudo docker search anaconda ┌──(holyeyes㉿kali2023)-[~] └─$ sudo …...

Dart调用JS对10000条定位数据滤波
使用Dart调用JS,还是为了练习跨语言调用; 一、编写对应的JS代码 平时在开发时不推荐将算法放在JS里,我这里是简单的做一下数据过滤; 首先生成一些随机定位数据,在实际开发中可以使用真实数据; // 随机定…...

大模型应用实践:AIGC探索之旅
随着OpenAI推出ChatGPT,AIGC迎来了前所未有的发展机遇。大模型技术已经不仅仅是技术趋势,而是深刻地塑造着我们交流、工作和思考的方式。 本文介绍了笔者理解的大模型和AIGC的密切联系,从历史沿革到实际应用案例,再到面临的技术挑…...
【.NET Core】异步编程模式
【.NET Core】异步编程模式 文章目录 【.NET Core】异步编程模式一、概述二、基于任务的异步模式(TAP)2.1 TAP模式命名、参数和返回类型2.2 TAP初始化异步操2.3 TAP如何编译2.4 手动生成TAP方法2.5 混合方法实现TAP2.6 TAP中Await挂起执行2.7 TAP中使用Y…...
macOS通过外置驱动器备份数据
通过外置驱动器备份数据(谨慎操作) 1.将外置驱动器连接到您的 Mac。驱动器容量应等于或大于您当前的启动磁盘。驱动器还应该是您可以抹掉的。 2.使用 macOS 恢复功能 抹掉外置驱动器,然后将 macOS 安装 到外置驱动器上。确保您选择的外置驱动…...

rtsp解析视频流
这里先说一下 播放rtsp 视频流,尽量让后端转换一下其他格式的流进行播放。因为rtsp的流需要flash支持,现在很多浏览器不支持flash。 先说一下这里我没有用video-player插件,因为它需要用flash ,在一个是我下载flash后,还是无法播放…...

【物联网】手把手完整实现STM32+ESP8266+MQTT+阿里云+APP应用——第3节-云产品流转配置
🌟博主领域:嵌入式领域&人工智能&软件开发 本节目标:本节目标是进行云产品流转配置为后面实际的手机APP的接入做铺垫。云产品流转配置的目的是为了后面能够让后面实际做出来的手机APP可以控制STM32/MCU,STM32/MCU可以将数…...
Spring Cloud Config相关问题及答案(2024)
1、什么是 Spring Cloud Config,它解决了哪些问题? Spring Cloud Config 是一个为微服务架构提供集中化外部配置支持的项目。它是构建在 Spring Cloud 生态系统之上,利用 Spring Boot 的开发便利性,简化了分布式系统中的配置管理…...

【Azure 架构师学习笔记】- Azure Databricks (4) - 使用Azure Key Vault 管理ADB Secret
本文属于【Azure 架构师学习笔记】系列。 本文属于【Azure Databricks】系列。 接上文 【Azure 架构师学习笔记】- Azure Databricks (3) - 再次认识DataBricks 前言 Azure Databricks有access token,是具有ADB内部最高权限的token。在云环境中这些高级别权限的sec…...

[每周一更]-(第50期):Go的垃圾回收GC
参考文章: https://juejin.cn/post/7111515970669117447https://draveness.me/golang/docs/part3-runtime/ch07-memory/golang-garbage-collector/https://colobu.com/2022/07/16/A-Guide-to-the-Go-Garbage-Collector/https://liangyaopei.github.io/2021/01/02/g…...

【嵌入式学习笔记-01】什么是UC,操作系统历史介绍,计算机系统分层,环境变量(PATH),错误
【嵌入式学习笔记】什么是UC,操作系统历史介绍,计算机系统分层,环境变量(PATH),错误 文章目录 什么是UC?计算机系统分层什么是操作系统? 环境变量什么是环境变量?环境变量的添加&am…...

【动态规划】LeetCode-10. 正则表达式匹配
10. 正则表达式匹配。 给你一个字符串 s 和一个字符规律 p,请你来实现一个支持 ‘.’ 和 ‘*’ 的正则表达式匹配。 ‘.’ 匹配任意单个字符‘*’ 匹配零个或多个前面的那一个元素 所谓匹配,是要涵盖 整个 字符串 s的,而不是部分字符串。 …...
Java 语言特性(面试系列2)
一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...

《从零掌握MIPI CSI-2: 协议精解与FPGA摄像头开发实战》-- CSI-2 协议详细解析 (一)
CSI-2 协议详细解析 (一) 1. CSI-2层定义(CSI-2 Layer Definitions) 分层结构 :CSI-2协议分为6层: 物理层(PHY Layer) : 定义电气特性、时钟机制和传输介质(导线&#…...
系统设计 --- MongoDB亿级数据查询优化策略
系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log,共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题,不能使用ELK只能使用…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)
可以使用Sqliteviz这个网站免费编写sql语句,它能够让用户直接在浏览器内练习SQL的语法,不需要安装任何软件。 链接如下: sqliteviz 注意: 在转写SQL语法时,关键字之间有一个特定的顺序,这个顺序会影响到…...
土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等
🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...

12.找到字符串中所有字母异位词
🧠 题目解析 题目描述: 给定两个字符串 s 和 p,找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义: 若两个字符串包含的字符种类和出现次数完全相同,顺序无所谓,则互为…...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...

如何在最短时间内提升打ctf(web)的水平?
刚刚刷完2遍 bugku 的 web 题,前来答题。 每个人对刷题理解是不同,有的人是看了writeup就等于刷了,有的人是收藏了writeup就等于刷了,有的人是跟着writeup做了一遍就等于刷了,还有的人是独立思考做了一遍就等于刷了。…...

10-Oracle 23 ai Vector Search 概述和参数
一、Oracle AI Vector Search 概述 企业和个人都在尝试各种AI,使用客户端或是内部自己搭建集成大模型的终端,加速与大型语言模型(LLM)的结合,同时使用检索增强生成(Retrieval Augmented Generation &#…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)
本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...