当前位置: 首页 > news >正文

Pandas之从sql库中导入数据的几种方法分析

1.使用mysql-connector-python库将SQL文件导入到Python中,并查询数据库中的表

确保已经安装mysql-connector-python库

#导入模块
import mysql.connector# 建立与MySQL数据库的连接
conn = mysql.connector.connect(host="localhost",user="username",password="password",database="database_name")# 创建游标对象
cursor = conn.cursor()#读取SQL文件内容:
with open("path/to/sql_file.sql", "r") as file:sql_script = file.read()
cursor.execute(sql_script, multi=True)
conn.commit()# 执行查询语句
query = "SELECT * FROM table_name"
cursor.execute(query)# 获取结果集
result = cursor.fetchall()# 显示结果
for row in result:print(row)# 关闭游标和连接
cursor.close()
conn.close()

"localhost","username","password","database_name"分别替换成,主机名字,sql的用户名字,用户密码,所要导入的数据库名字
"path/to/sql_file.sql"替换为数据库粘贴到pycharm以后得实际路径

"table_name"改为实际表名

#在sql中查询用户名
SELECT User FROM mysql.user;
#在sql中查询主机名
SELECT HOSTNAME() AS hostname;

2.MySQLdb模块导入sql文件到Python中

#安装MySQLdb库:
pip install MySQL-python#导入MySQLdb模块:
import MySQLdb#建立与MySQL数据库的连接:
conn = MySQLdb.connect(host="localhost",user="username",passwd="password",db="database_name")#创建游标对象:
cursor = conn.cursor()
#读取SQL文件内容:
with open("path/to/sql_file.sql", "r") as file:sql_script = file.read()#执行SQL脚本:
cursor.execute(sql_script)#提交更改到数据库:
conn.commit()#关闭游标和连接:
cursor.close()
conn.close()

(如果你使用的是Python 3,MySQLdb可能不兼容。可以尝试安装替代模块,如pymysqlmysql-connector-python。)

3.使用pymysql库将SQL文件导入到Python中

#安装pymysql库:
pip install pymysql#导入pymysql模块:
import pymysql#建立与MySQL数据库的连接:
conn = pymysql.connect(host="localhost",user="username",password="password",db="database_name")
#请根据实际情况修改host、user、password和db等参数。#创建游标对象:
cursor = conn.cursor()#读取SQL文件内容:
with open("path/to/sql_file.sql", "r") as file:sql_script = file.read()
#将"path/to/sql_file.sql"替换为您要导入的SQL文件的路径。#执行SQL脚本:
cursor.execute(sql_script)#提交更改到数据库:
conn.commit()#关闭游标和连接:
cursor.close()
conn.close()

相关文章:

Pandas之从sql库中导入数据的几种方法分析

1.使用mysql-connector-python库将SQL文件导入到Python中,并查询数据库中的表 确保已经安装mysql-connector-python库 #导入模块 import mysql.connector# 建立与MySQL数据库的连接 conn mysql.connector.connect(host"localhost",user"username&…...

18. Mysql 存储过程,实现动态数据透视

文章目录 概述常见操作创建存储过程存储过程局部变量定义和赋值查看存储过程删除存储过程调用存储过程 示例-动态数据透视详细讲解总结参考资料 概述 Mysql 存储过程是一组预先编译的 sql 语句集合,它们被存储在数据库中,并可以被多次调用执行。存储过程…...

VuePress部署到GitHub Pages

一、git push自动部署 1、创建用于工作流的文件 在项目根目录下创建一个用于 GitHub Actions 的工作流 .yml 文件 name: docson:# 每当 push 到 main 分支时触发部署push:branches: [main]# 手动触发部署workflow_dispatch:jobs:docs:runs-on: ubuntu-lateststeps:- uses: a…...

git 本地仓库

本地仓库 start.bat 启动...

Hive实战:分科汇总求月考平均分

文章目录 一、实战概述二、提出任务三、完成任务(一)准备数据1、在虚拟机上创建文本文件2、上传文件到HDFS指定目录 (二)实现步骤1、启动Hive Metastore服务2、启动Hive客户端3、创建分区的学生成绩表4、按分区加载数据5、查看分区…...

快速搭建知识付费小程序,3分钟即可开启知识变现之旅

明理信息科技知识付费saas租户平台 在当今数字化时代,知识付费已经成为一种趋势,越来越多的人愿意为有价值的知识付费。然而,公共知识付费平台虽然内容丰富,但难以满足个人或企业个性化的需求和品牌打造。同时,开发和…...

【计算机图形学划重点】第一讲-Pipeline and Introduction

基础知识 Vertex(顶点) define the location of primitives in space, and consists of vertex stream. 顶点用于定义空间中基本图形(primitives)的位置。它包含了一个顶点流(vertex stream)&#xff0c…...

面试题-DAG 有向无环图

有向无环图用于解决前后依赖问题,在Apollo中用于各个组件的依赖管理。 在算法面试中,有很多相关题目 比如排课问题,有先修课比如启动问题,需要先启动1,才能启动2 概念 顶点: 图中的一个点,比…...

vite + vue3引入ant design vue 报错

npm install ant-design-vue --save下载插件并在main.ts 全局引入 报错 解决办法一: main.ts注释掉全局引入 模块按需引入 解决办法二 将package.json中的ant-design-vue的版本^4.0.0-rc.4改为 ^3.2.15版本 同时将将package-lock.json中的ant-design-vue的版本…...

使用EasyPoi导入数据并返回失败xls

添加依赖 <!-- https://mvnrepository.com/artifact/cn.afterturn/easypoi-base --> <dependency><groupId>cn.afterturn</groupId><artifactId>easypoi-base</artifactId><version>4.4.0</version> </dependency> 工…...

机械配件移动商城课程概述

项目介绍 开发准备 任务 开源库介绍 框架搭建 工具类...

prometheus-docker 快速安装

镜像加速 sudo mkdir -p /etc/docker sudo tee /ect/docker/daemon.json << "EOF" {"register-mirros": ["http://hub-mirror.c.163.com"] } EOF安装docker export DOWNLOAD_URL"http://mirrors.163.com/docker-ce" curl -fsSl…...

RabbitMQ 核心概念(交换机、队列、路由键),队列类型等介绍

RabbitMQ 核心概念(交换机、队列、路由键)&#xff0c;队列类型等介绍 RabbitMQ 是一个消息队列系统&#xff0c;它的核心概念包括交换机&#xff08;Exchange&#xff09;、队列&#xff08;Queue&#xff09;和路由键&#xff08;Routing Key&#xff09;&#xff0c;它们一起…...

1001 害死人不偿命的(3n+1)猜想

卡拉兹(Callatz)猜想&#xff1a; 对任何一个正整数 n&#xff0c;如果它是偶数&#xff0c;那么把它砍掉一半&#xff1b;如果它是奇数&#xff0c;那么把 (3n1) 砍掉一半。这样一直反复砍下去&#xff0c;最后一定在某一步得到 n1。卡拉兹在 1950 年的世界数学家大会上公布了…...

七、HTML 文本格式化

一、HTML 文本格式化 加粗文本斜体文本电脑自动输出 这是 下标 和 上标 <!DOCTYPE html> <html><head><meta charset"utf-8"><title>HTML文本格式化</title> </head><body><b>加粗文本</b><br>…...

OSI 模型和 TCP/IP 模型的异同

开放式系统互联模型&#xff08;OSI&#xff09;是一个参考标准&#xff0c;解释协议相互之间应该如何相互作用。TCP/IP协议是美国国防部发明的&#xff0c;是让互联网成为了目前这个样子的标准之一 OSI&#xff1a;物理层&#xff0c;数据链路层&#xff0c;网络层&#xff0…...

创新性文生视频模型,南洋理工开源FreeInit

文本领域的ChatGPT&#xff0c;画图领域的Midjourney都展现出了大模型强大的一面&#xff0c;虽然视频领域有Gen-2这样的领导者&#xff0c;但现有的视频扩散模型在生成的效果中仍然存在时间一致性不足和不自然的动态效果。 南洋理工大学S实验室的研究人员发现&#xff0c;扩散…...

linux的页缓存page cache

目录 如何查看系统的 Page Cache&#xff1f; 为什么 Linux 不把 Page Cache 称为 block cache&#xff1f; Page Cache 的优劣势 Page Cache 的优势 加快数据访问 减少 IO 次数&#xff0c;提高系统磁盘 I/O 吞吐量 Page Cache 的劣势 由于我们开发的程序要运行的话一般…...

数字IC后端实现之Innovus TA-152错误解析(分频generated clock定义错误)

**ERROR: (TA-152): A latency path from the ‘Fall’ edge of the master clock at source pin… Error Code TA-152 在数字IC后端实现innovus中我们经常会看到这类Error&#xff0c;具体信息如下所示。 Error Message **ERROR: (TA-152): A latency path from the ‘Fa…...

虹科方案丨从困境到突破:TigoLeap方案引领数据采集与优化变革

来源&#xff1a;虹科工业智能互联 虹科方案丨从困境到突破&#xff1a;TigoLeap方案引领数据采集与优化变革 原文链接&#xff1a;https://mp.weixin.qq.com/s/H3pd5G8coBvyTwASNS_CFA 欢迎关注虹科&#xff0c;为您提供最新资讯&#xff01; 导读 在数字化工厂和智能制造时…...

浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)

✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义&#xff08;Task Definition&…...

业务系统对接大模型的基础方案:架构设计与关键步骤

业务系统对接大模型&#xff1a;架构设计与关键步骤 在当今数字化转型的浪潮中&#xff0c;大语言模型&#xff08;LLM&#xff09;已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中&#xff0c;不仅可以优化用户体验&#xff0c;还能为业务决策提供…...

手游刚开服就被攻击怎么办?如何防御DDoS?

开服初期是手游最脆弱的阶段&#xff0c;极易成为DDoS攻击的目标。一旦遭遇攻击&#xff0c;可能导致服务器瘫痪、玩家流失&#xff0c;甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案&#xff0c;帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...

基于FPGA的PID算法学习———实现PID比例控制算法

基于FPGA的PID算法学习 前言一、PID算法分析二、PID仿真分析1. PID代码2.PI代码3.P代码4.顶层5.测试文件6.仿真波形 总结 前言 学习内容&#xff1a;参考网站&#xff1a; PID算法控制 PID即&#xff1a;Proportional&#xff08;比例&#xff09;、Integral&#xff08;积分&…...

【力扣数据库知识手册笔记】索引

索引 索引的优缺点 优点1. 通过创建唯一性索引&#xff0c;可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度&#xff08;创建索引的主要原因&#xff09;。3. 可以加速表和表之间的连接&#xff0c;实现数据的参考完整性。4. 可以在查询过程中&#xff0c;…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个医院挂号小程序

一、开发准备 ​​环境搭建​​&#xff1a; 安装DevEco Studio 3.0或更高版本配置HarmonyOS SDK申请开发者账号 ​​项目创建​​&#xff1a; File > New > Create Project > Application (选择"Empty Ability") 二、核心功能实现 1. 医院科室展示 /…...

屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!

5月28日&#xff0c;中天合创屋面分布式光伏发电项目顺利并网发电&#xff0c;该项目位于内蒙古自治区鄂尔多斯市乌审旗&#xff0c;项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站&#xff0c;总装机容量为9.96MWp。 项目投运后&#xff0c;每年可节约标煤3670…...

uniapp中使用aixos 报错

问题&#xff1a; 在uniapp中使用aixos&#xff0c;运行后报如下错误&#xff1a; AxiosError: There is no suitable adapter to dispatch the request since : - adapter xhr is not supported by the environment - adapter http is not available in the build 解决方案&…...

多模态大语言模型arxiv论文略读(108)

CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文标题&#xff1a;CROME: Cross-Modal Adapters for Efficient Multimodal LLM ➡️ 论文作者&#xff1a;Sayna Ebrahimi, Sercan O. Arik, Tejas Nama, Tomas Pfister ➡️ 研究机构: Google Cloud AI Re…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...