debug mccl 02 —— 环境搭建及初步调试
1, 搭建nccl 调试环境
下载 nccl 源代码
git clone --recursive https://github.com/NVIDIA/nccl.git
只debug host代码,故将设备代码的编译标志改成 -O3
(base) hipper@hipper-G21:~/let_debug_nccl/nccl$ git diff
diff --git a/makefiles/common.mk b/makefiles/common.mk
index a037cf3..ee2aa8e 100644
--- a/makefiles/common.mk
+++ b/makefiles/common.mk
@@ -82,7 +82,8 @@ ifeq ($(DEBUG), 0)NVCUFLAGS += -O3CXXFLAGS += -O3 -gelse
-NVCUFLAGS += -O0 -G -g
+#NVCUFLAGS += -O0 -G -g
+NVCUFLAGS += -O3CXXFLAGS += -O0 -g -ggdb3endif
修改后变成如下:
nccl$ vim makefiles/common.mk
ifeq ($(DEBUG), 0)
NVCUFLAGS += -O3
CXXFLAGS += -O3 -g
else
#NVCUFLAGS += -O0 -G -g
NVCUFLAGS += -O3
CXXFLAGS += -O0 -g -ggdb3
endif
构建 nccl shared library:
机器上是几张sm_85 的卡,故:
$ cd nccl
$ make -j src.build DEBUG=1 NVCC_GENCODE="-gencode=arch=compute_80,code=sm_80"
到此即可,不需要安装nccl,直接过来使用即可;
2, 创建调试APP
在nccl所在的目录中创建app文件夹:
$ mkdir app$ cd app$ vim sp_md_nccl.cpp$ vim Makefile
sp_md_nccl.cpp:
#include <stdlib.h>
#include <stdio.h>
#include "cuda_runtime.h"
#include "nccl.h"
#include <time.h>
#include <sys/time.h>#define CUDACHECK(cmd) do { \cudaError_t err = cmd; \if (err != cudaSuccess) { \printf("Failed: Cuda error %s:%d '%s'\n", \__FILE__,__LINE__,cudaGetErrorString(err)); \exit(EXIT_FAILURE); \} \
} while(0)#define NCCLCHECK(cmd) do { \ncclResult_t res = cmd; \if (res != ncclSuccess) { \printf("Failed, NCCL error %s:%d '%s'\n", \__FILE__,__LINE__,ncclGetErrorString(res)); \exit(EXIT_FAILURE); \} \
} while(0)void get_seed(long long &seed)
{struct timeval tv;gettimeofday(&tv, NULL);seed = (long long)tv.tv_sec * 1000*1000 + tv.tv_usec;//only second and usecond;printf("useconds:%lld\n", seed);
}void init_vector(float* A, int n)
{long long seed = 0;get_seed(seed);srand(seed);for(int i=0; i<n; i++){A[i] = (rand()%100)/100.0f;}
}void print_vector(float* A, float size)
{for(int i=0; i<size; i++)printf("%.2f ", A[i]);printf("\n");
}void vector_add_vector(float* sum, float* A, int n)
{for(int i=0; i<n; i++){sum[i] += A[i];}
}int main(int argc, char* argv[])
{ncclComm_t comms[4];printf("ncclComm_t is a pointer type, sizeof(ncclComm_t)=%lu\n", sizeof(ncclComm_t));//managing 4 devices//int nDev = 4;int nDev = 2;//int size = 32*1024*1024;int size = 16*16;int devs[4] = { 0, 1, 2, 3 };float** sendbuff_host = (float**)malloc(nDev * sizeof(float*));float** recvbuff_host = (float**)malloc(nDev * sizeof(float*));for(int dev=0; dev<nDev; dev++){sendbuff_host[dev] = (float*)malloc(size*sizeof(float));recvbuff_host[dev] = (float*)malloc(size*sizeof(float));init_vector(sendbuff_host[dev], size);init_vector(recvbuff_host[dev], size);}//sigma(sendbuff_host[i]); i = 0, 1, ..., nDev-1float* result = (float*)malloc(size*sizeof(float));memset(result, 0, size*sizeof(float));for(int dev=0; dev<nDev; dev++){vector_add_vector(result, sendbuff_host[dev], size);printf("sendbuff_host[%d]=\n", dev);print_vector(sendbuff_host[dev], size);}printf("result=\n");print_vector(result, size);//allocating and initializing device buffersfloat** sendbuff = (float**)malloc(nDev * sizeof(float*));float** recvbuff = (float**)malloc(nDev * sizeof(float*));cudaStream_t* s = (cudaStream_t*)malloc(sizeof(cudaStream_t)*nDev);for (int i = 0; i < nDev; ++i) {CUDACHECK(cudaSetDevice(i));CUDACHECK(cudaMalloc(sendbuff + i, size * sizeof(float)));CUDACHECK(cudaMalloc(recvbuff + i, size * sizeof(float)));CUDACHECK(cudaMemcpy(sendbuff[i], sendbuff_host[i], size*sizeof(float), cudaMemcpyHostToDevice));CUDACHECK(cudaMemcpy(recvbuff[i], recvbuff_host[i], size*sizeof(float), cudaMemcpyHostToDevice));CUDACHECK(cudaStreamCreate(s+i));}//initializing NCCLNCCLCHECK(ncclCommInitAll(comms, nDev, devs));//calling NCCL communication API. Group API is required when using//multiple devices per threadNCCLCHECK(ncclGroupStart());printf("blocked ncclAllReduce will be calleded\n");fflush(stdout);for (int i = 0; i < nDev; ++i)NCCLCHECK(ncclAllReduce((const void*)sendbuff[i], (void*)recvbuff[i], size, ncclFloat, ncclSum, comms[i], s[i]));printf("blocked ncclAllReduce is calleded nDev =%d\n", nDev);fflush(stdout);NCCLCHECK(ncclGroupEnd());//synchronizing on CUDA streams to wait for completion of NCCL operationfor (int i = 0; i < nDev; ++i) {CUDACHECK(cudaSetDevice(i));CUDACHECK(cudaStreamSynchronize(s[i]));}for (int i = 0; i < nDev; ++i) {CUDACHECK(cudaSetDevice(i));CUDACHECK(cudaMemcpy(recvbuff_host[i], recvbuff[i], size*sizeof(float), cudaMemcpyDeviceToHost));}for (int i = 0; i < nDev; ++i) {CUDACHECK(cudaSetDevice(i));CUDACHECK(cudaStreamSynchronize(s[i]));}for(int i=0; i<nDev; i++) {printf("recvbuff_dev2host[%d]=\n", i);print_vector(recvbuff_host[i], size);}//free device buffersfor (int i = 0; i < nDev; ++i) {CUDACHECK(cudaSetDevice(i));CUDACHECK(cudaFree(sendbuff[i]));CUDACHECK(cudaFree(recvbuff[i]));}//finalizing NCCLfor(int i = 0; i < nDev; ++i)ncclCommDestroy(comms[i]);printf("Success \n");return 0;
}
Makefile:
INC := -I /usr/local/cuda/include -I ../nccl/build/include
LD_FLAGS := -L ../nccl/build/lib -lnccl -L /usr/local/cuda/lib64 -lcudartEXE := singleProc_multiDev_ncclall: $(EXE)%: %.cppg++ -g -ggdb3 $< -o $@ $(INC) $(LD_FLAGS).PHONY: clean
clean: -rm -rf $(EXE)
export LD_LIBRARY_PATH=../nccl/build/lib
3, 开始调试
$ cuda-gdb sp_md_nccl(cuda-gdb) start (cuda-gdb) rbreak doLauches(cuda-gdb) c(cuda-gdb) p ncclGroupCommHead->tasks.collQueue.head->op
初步实现了可debug的效果:
现在想要搞清楚在程序调用 ncclAllReduce(..., ncclSum, ... ) 后,是如何映射到 cudaLaunchKernel调用到了正确的 cuda kernel 函数的。
在doLaunches函数中,作如下debug动作:
查看 doLaunches(ncclComm*) 的函数参数,即,gropu.cc中的变量:ncclGroupCommHead的某个成员的成员的值:op
其结果如下:
(cuda-gdb) p ncclGroupCommHead
$5 = (ncclComm *) 0x5555563231e0
(cuda-gdb) p ncclGroupCommHead->tasks.collQueue.head->op
$6 = {op = ncclDevSum, proxyOp = ncclSum, scalarArgIsPtr = false, scalarArg = 256}
(cuda-gdb)
不过这依然只停留在了 ncclSum的这个枚举类型上,还没锁定对应的cudaKernel。
接下来继续努力 ...
相关文章:

debug mccl 02 —— 环境搭建及初步调试
1, 搭建nccl 调试环境 下载 nccl 源代码 git clone --recursive https://github.com/NVIDIA/nccl.git 只debug host代码,故将设备代码的编译标志改成 -O3 (base) hipperhipper-G21:~/let_debug_nccl/nccl$ git diff diff --git a/makefiles/common.mk b/makefiles/…...
ros python 接收GPS RTK 串口消息再转发 ros 主题消息
代码是一个ROS(Robot Operating System)节点,用于从GPS设备读取RTK(实时动态)数据并通过ROS主题发布。 步骤: 导入必要的模块: rospy 是ROS的Python库,用于ROS的节点、发布者和订阅者。serial 用于串行通信。NavSatFix 和 NavSatStatus 是从GPS接收的NMEA 0183标准消息…...
2024年网络安全竞赛-页面信息发现任务解析
页面信息发现任务说明: 服务器场景:win20230305(关闭链接)在渗透机中对服务器信息收集,将获取到的服务器网站端口作为Flag值提交;访问服务器网站页面,找到主页面中的Flag值信息,将Flag值提交;访问服务器网站页面,找到主页面中的脚本信息,并将Flag值提交;访问服务器…...
ARM DMA使用整理
Direct Memory Access, 直接存储访问。同SPI,IIC,USART等一样,属于MCU的一个外设,用于在不需要MCU介入的情况下进行数据传输。可以将数据从外设传输到flash,也可以将数据从flash传输到外设,或者flash内部数据移动。 它…...

移动通信原理与关键技术学习(第四代蜂窝移动通信系统)
前言:LTE 标准于2008 年底完成了第一个版本3GPP Release 8的制定工作。另一方面,ITU 于2007 年召开了世界无线电会议WRC07,开始了B3G 频谱的分配,并于2008 年完成了IMT-2000(即3G)系统的演进——IMT-Advanc…...

光明源@智慧厕所技术:优化生活,提升卫生舒适度
在当今数字科技飞速发展的时代,我们的日常生活正在经历一场革命,而这场革命的其中一个前沿领域就是智慧厕所技术。这项技术不仅仅是对传统卫生间的一次升级,更是对我们生活品质的全方位提升。从智能感应到数据分析,从环保设计到舒…...

【Bootstrap学习 day13】
Bootstrap5 下拉菜单 下拉菜单通常用于导航标题内,在用户鼠标悬停或单击触发元素时显示相关链接列表。 基础的下拉列表 <div class"dropdown"><button type"button" class"btn btn-primary dropdown-toggle" data-bs-toggl…...
Shell:常用命令之dirname与basename
一、介绍 1、dirname命令用于去除文件名中的非目录部分,删除最后一个“\”后面的路径,显示父目录。 语法:dirname [选项] 参数 2、basename命令用于打印目录或者文件的基本名称,显示最后的目录名或文件名。 语法:basen…...

Linux-v4l2框架
框架图 从上图不难看出,v4l2_device作为顶层管理者,一方面通过嵌入到一个video_device中,暴露video设备节点给用户空间进行控制;另一方面,video_device内部会创建一个media_entity作为在media controller中的抽象体&a…...
VPC网络架构下的网络上数据采集
介绍 想象这样一个场景,一开始在公司里,所有的部门的物理机、POD都在一个经典网络内,它们可以通过 IP 访问彼此,没有任何限制。因此有很多系统基于此设计了很多点对点 IP 直连的访问,比如中心控制服务器 S 会主动访问物…...

模拟算法(模拟算法 == 依葫芦画瓢)万字
模拟算法 基本思想引入算法题替换所有的问号提莫攻击Z字形变换外观数列数青蛙 基本思想 模拟算法 依葫芦画瓢解题思维要么通俗易懂,要么就是找规律,主要难度在于将思路转换为代码。 特点:相对于其他算法思维,思路比较简单&#x…...

QtApplets-SystemInfo
QtApplets-SystemInfo 今天是2024年1月3日09:18:44,这也是2024年的第一篇博客,今天我们主要两件事,第一件,获取系统CPU使用率,第二件,获取系统内存使用情况。 这里因为写博客的这个本本的环境配置不…...
vue3防抖函数封装与使用,以指令的形式使用
utils/debounce.js /*** 防抖函数* param {*} fn 函数* param {*} delay 暂停时间* returns */ export function debounce(fn, delay 500) {let timer nullreturn function (...args) {// console.log(arguments);// const args Array.from(arguments)if (timer) {clearTim…...

Hive学习(13)lag和lead函数取偏移量
hive里面lag函数 在数据处理和分析中,窗口函数是一种重要的技术,用于在数据集中执行聚合和分析操作。Hive作为一种大数据处理框架,也提供了窗口函数的支持。在Hive中,Lag函数是一种常用的窗口函数,可以用于计算前一行…...
Centos Unable to verify the graphical display setup
ERROR: Unable to verify the graphical display setup. 在Linux下安装Oracle时 运行 ./runInstaller 报错 ERROR: Unable to verify the graphical display setup. This application requires X display. Make sure that xdpyinfo exist under PATH variable. No X11 DISPL…...
Java 说一下 synchronized 底层实现原理?
Java 说一下 synchronized 底层实现原理? synchronized 是 Java 中用于实现同步的关键字,它保证了多个线程对共享资源的互斥访问。底层实现涉及到对象头的 Mark Word 和锁升级过程。 synchronized 可以用于方法上或代码块上,分别对应于方法…...

nginx访问路径匹配方法
目录 一:匹配方法 二:location使用: 三:rewrite使用 一:匹配方法 location和rewrite是两个用于处理请求的重要模块,它们都可以根据请求的路径进行匹配和处理。 二:location使用: 1:简单匹配…...
偌依 项目部署及上线步骤
准备实验环境,准备3台机器 1.作为前端服务器,mysql,redis服务器--同时临时作为代码打包服务器 192.168.2.65 nginx-server 2.作为后端服务器 192.168.2.66 java-server-1 192.168.2.67 java-server-2 安装nginx/mysql #安装nginx [rootweb-nginx ~]…...
PHP特性知识点扫盲 - 上篇
概述 之前在分析thinkphp源码的时候,对依赖注入等等php高级的特性一直想做一个梳理和总结,一直没有时间,好不容易抽一点时间对技术的盲点做一个扫盲和总结。 特性 1.命名空间 命名空间是在PHP5.3中引入,是一个很重要的工具&am…...

Docker一键极速安装Nacos,并配置数据库!
1 部署方式 1.1 DockerHub javaedgeJavaEdgedeMac-mini ~ % docker run --name nacos \ -e MODEstandalone \ -e JVM_XMS128m \ -e JVM_XMX128m \ -e JVM_XMN64m \ -e JVM_MS64m \ -e JVM_MMS64m \ -p 8848:8848 \ -d nacos/nacos-server:v2.2.3 a624c64a1a25ad2d15908a67316d…...

MPNet:旋转机械轻量化故障诊断模型详解python代码复现
目录 一、问题背景与挑战 二、MPNet核心架构 2.1 多分支特征融合模块(MBFM) 2.2 残差注意力金字塔模块(RAPM) 2.2.1 空间金字塔注意力(SPA) 2.2.2 金字塔残差块(PRBlock) 2.3 分类器设计 三、关键技术突破 3.1 多尺度特征融合 3.2 轻量化设计策略 3.3 抗噪声…...
rknn优化教程(二)
文章目录 1. 前述2. 三方库的封装2.1 xrepo中的库2.2 xrepo之外的库2.2.1 opencv2.2.2 rknnrt2.2.3 spdlog 3. rknn_engine库 1. 前述 OK,开始写第二篇的内容了。这篇博客主要能写一下: 如何给一些三方库按照xmake方式进行封装,供调用如何按…...

学校招生小程序源码介绍
基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码,专为学校招生场景量身打造,功能实用且操作便捷。 从技术架构来看,ThinkPHP提供稳定可靠的后台服务,FastAdmin加速开发流程,UniApp则保障小程序在多端有良好的兼…...
【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表
1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...

屋顶变身“发电站” ,中天合创屋面分布式光伏发电项目顺利并网!
5月28日,中天合创屋面分布式光伏发电项目顺利并网发电,该项目位于内蒙古自治区鄂尔多斯市乌审旗,项目利用中天合创聚乙烯、聚丙烯仓库屋面作为场地建设光伏电站,总装机容量为9.96MWp。 项目投运后,每年可节约标煤3670…...
拉力测试cuda pytorch 把 4070显卡拉满
import torch import timedef stress_test_gpu(matrix_size16384, duration300):"""对GPU进行压力测试,通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size: 矩阵维度大小,增大可提高计算复杂度duration: 测试持续时间(秒&…...

视频行为标注工具BehaviLabel(源码+使用介绍+Windows.Exe版本)
前言: 最近在做行为检测相关的模型,用的是时空图卷积网络(STGCN),但原有kinetic-400数据集数据质量较低,需要进行细粒度的标注,同时粗略搜了下已有开源工具基本都集中于图像分割这块,…...

Mysql中select查询语句的执行过程
目录 1、介绍 1.1、组件介绍 1.2、Sql执行顺序 2、执行流程 2.1. 连接与认证 2.2. 查询缓存 2.3. 语法解析(Parser) 2.4、执行sql 1. 预处理(Preprocessor) 2. 查询优化器(Optimizer) 3. 执行器…...
AGain DB和倍数增益的关系
我在设置一款索尼CMOS芯片时,Again增益0db变化为6DB,画面的变化只有2倍DN的增益,比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析: 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...
腾讯云V3签名
想要接入腾讯云的Api,必然先按其文档计算出所要求的签名。 之前也调用过腾讯云的接口,但总是卡在签名这一步,最后放弃选择SDK,这次终于自己代码实现。 可能腾讯云翻新了接口文档,现在阅读起来,清晰了很多&…...