动手学深度学习之卷积神经网络之池化层
池化层
卷积层对位置太敏感了,可能一点点变化就会导致输出的变化,这时候就需要池化层了,池化层的主要作用就是缓解卷积层对位置的敏感性

二维最大池化
这里有一个窗口,来滑动,每次我们将窗口中最大的值给拿出来

还是上面的例子,这里的最大池化窗口为2*2

填充、步幅和多个通道
这里基本与卷积层类似,与卷积层不同的是,池化层不需要学习任何的参数

平均池化层
与最大池化层不同的地方在于将最大操作子变为平均,最大池化层是将每个窗口中最强的信号输出,平均池化层就是取每个窗口中的平均效果

总结

实现池化层
import torch
from torch import nn
from d2l import torch as d2l# 实现池化层的正向传播,这里没有padding,没有stride
def pool2d(X, pool_size, mode="max"):p_h, p_w = pool_size # 这里我们拿到池化窗口的高和宽Y = torch.zeros((X.shape[0] - p_h + 1, X.shape[1] - p_w + 1)) # 这里我们先把输出的形状给构造好# 遍历输入然后赋值for i in range(Y.shape[0]):for j in range(Y.shape[1]):if mode == 'max': # 这里做最大池化Y[i, j] = X[i:i + p_h, j:j + p_w].max() elif mode == 'avg': # 这里做平均池化Y[i, j] = X[i:i + p_h, j:j + p_w].mean()return Y
# 验证二维最大池化层的输出
X = torch.tensor([[0.0, 1.0, 2.0], [3.0, 4.0, 5.0], [6.0, 7.0, 8.0]])
pool2d(X, (2, 2))
tensor([[4., 5.],[7., 8.]])
#验证平均池化层的输出
pool2d(X, (2, 2), 'avg')
tensor([[2., 3.],[5., 6.]])
# 填充和步幅
X = torch.arange(16, dtype=torch.float32).reshape((1, 1, 4, 4)) # 这里我们创建一个4*4的矩阵,通道为1,批量大小为1
X
tensor([[[[ 0., 1., 2., 3.],[ 4., 5., 6., 7.],[ 8., 9., 10., 11.],[12., 13., 14., 15.]]]])
# PyTorch中的步幅与池化层窗口的大小相同
pool2d = nn.MaxPool2d(3) # 这里3的意思就是一个3*3的窗口,这里没有指定步幅和填充
pool2d(X)
/Users/tiger/opt/anaconda3/envs/d2l-zh/lib/python3.8/site-packages/torch/nn/functional.py:718: UserWarning: Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at ../c10/core/TensorImpl.h:1156.)return torch.max_pool2d(input, kernel_size, stride, padding, dilation, ceil_mode)tensor([[[[10.]]]])
# 手动设定填充和步幅
pool2d = nn.MaxPool2d(3, padding=1, stride=2)
pool2d(X)
tensor([[[[ 5., 7.],[13., 15.]]]])
# 设定一个任意大小的矩形池化窗口,并分别设定填充和步幅的高度和宽度
pool2d = nn.MaxPool2d((2, 3), padding=(1, 1), stride=(2, 3)) # 这里padding是对称的,这里的stride和窗口大小一样不重叠
pool2d(X)
tensor([[[[ 1., 3.],[ 9., 11.],[13., 15.]]]])
# 池化层在每个输入通道上单独运算
X = torch.cat((X, X + 1), 1) # 这里cat是拼接两个张量,1的意思是按照维度1来拼接
pool2d = nn.MaxPool2d(3, padding=1, stride=2) # padding参数是有一个行和宽的,假设我们指定一个数的话,他的padding就是等于那个值,如果用一个元组的话前面的就是对于行的padding,后面的就是对于列的padding
pool2d(X)
tensor([[[[ 5., 7.],[13., 15.]],[[ 6., 8.],[14., 16.]]]])
文章知识点与官方知识档案匹配,可进一步学习相关知识
Python入门技能树>首页>概览384043 人正在系统学习中
相关文章:
动手学深度学习之卷积神经网络之池化层
池化层 卷积层对位置太敏感了,可能一点点变化就会导致输出的变化,这时候就需要池化层了,池化层的主要作用就是缓解卷积层对位置的敏感性 二维最大池化 这里有一个窗口,来滑动,每次我们将窗口中最大的值给拿出来 还是上…...
HackTheBox - Medium - Linux - Ambassador
Ambassador Ambassador 是一台中等难度的 Linux 机器,用于解决硬编码的明文凭据留在旧版本代码中的问题。首先,“Grafana”CVE (“CVE-2021-43798”) 用于读取目标上的任意文件。在研究了服务的常见配置方式后,将在其…...
嵌入式——循环队列
循环队列 (Circular Queue) 是一种数据结构(或称环形队列、圆形队列)。它类似于普通队列,但是在循环队列中,当队列尾部到达数组的末尾时,它会从数组的开头重新开始。这种数据结构通常用于需要固定大小的队列,例如计算机内存中的缓冲区。循环队列可以通过数组或链表实现,…...
2024.1.7-实战-docker方式给自己网站部署prometheus监控ecs资源使用情况-2024.1.7(测试成功)
实战-docker方式给自己网站部署prometheus监控ecs资源使用情况-2024.1.7(测试成功) 目录 最终效果 原文链接 https://onedayxyy.cn/docs/prometheus-grafana-ecs 参考模板 https://i4t.com/ https://grafana.frps.cn 🔰 额,注意哦: 他这个是通过frp来…...
20240107 SQL基础50题打卡
20240107 SQL基础50题打卡 1978. 上级经理已离职的公司员工 表: Employees ----------------------- | Column Name | Type | ----------------------- | employee_id | int | | name | varchar | | manager_id | int | | salary | int | -…...
阿里云公网带宽出网和入网是什么?上行和下行是什么?
什么是阿里云服务器ECS的入网带宽和出网带宽?以云服务器为中心,流入云服务器占用的带宽是入网带宽,流量从云服务器流出的带宽是出网带宽。阿里云服务器网aliyunfuwuqi.com分享入网带宽和出网带宽说明表: 带宽类别说明入网带宽&am…...
eureka工作原理是什么
EUREKA 是一个基于 RESTful 风格的服务发现系统,它主要用于帮助实现在微服务架构中的服务自动发现与注册。其工作原理主要包括以下几个步骤: 注册中心:EUREKA 中有一个集中的注册中心,所有的服务都将在此注册和发现。注册中心可以…...
Vue中的事件委托(事件代理)使用方法介绍
事件委托(事件代理) 将原本需要绑定在子元素上的事件监听器委托在父元素上,让父元素充当事件监听的职务。 事件委托是一种利用事件冒泡的特性,在父节点上响应事件,而不是在子节点上响应事件的技术。它能够改善性能&a…...
「HDLBits题解」Wire decl
本专栏的目的是分享可以通过HDLBits仿真的Verilog代码 以提供参考 各位可同时参考我的代码和官方题解代码 或许会有所收益 题目链接:Wire decl - HDLBits default_nettype none module top_module(input a,input b,input c,input d,output out,output out_n ); w…...
[MAUI]在.NET MAUI中调用拨号界面
在.NET MAUI中调用拨号界面 前置要求: Visual Studio 2022 安装包“.NET Multi-platform App UI 开发” 参考文档: 电话拨号程序 新建一个MAUI项目 在解决方案资源管理器窗口中找到Platforms/Android/AndroidManifest.xml在AndroidManifest.xml中添加下文中…块如下:<?xml…...
Kali/Debian Linux 安装Docker Engine
0x01 卸载旧版本 在安装Docker Engine之前,需要卸载已经安装的可能有冲突的软件包。一些维护者在他们的仓库提供的Docker包可能是非Docker官方发行版,须先卸载这些软件包,然后才能安装Docker官方正式发行的Docker Engine版本。 要卸载的软件…...
Spring 应用合并之路(二):峰回路转,柳暗花明 | 京东云技术团队
书接上文,前面在 [Spring 应用合并之路(一):摸石头过河]介绍了几种不成功的经验,下面继续折腾… 四、仓库合并,独立容器 在经历了上面的尝试,在同事为啥不搞两个独立的容器提醒下,…...
SQL Error 1366, SQLState HY000
SQL错误 1366 和 SQLState HY000 通常指的是 MySQL 与字符编码或数据截断有关的问题。当尝试将数据插入具有与正在插入的数据不兼容的字符集或排序规则的列时,或者正在插入的数据对于列来说过长时,就会出现此错误。 解决方式: 检查列长度&am…...
Codeforces Round 893 (Div. 2)(VP-7,寒假加训)
VP时间 A. 关键在于按c的按钮 c&1 Alice可以多按一次c按钮 也就是a多一个(a) 之后比较a,b大小即可 !(c&1) Alice Bob操作c按钮次数一样 1.ac B.贪心 一开始会吃饼干 如果有卖饼的就吃 如果隔离一段时间到d没吃就吃(当时…...
MySQL第四战:视图以及常见面试题(上)
目录 目录: 一.视图 1.介绍什么是视图 2.视图的语法 语法讲解 实例操作 二.MySQL面试题 1.SQL脚本 2.面试题实战 三.思维导图 目录: 随着数字化时代的飞速发展,数据库技术,特别是MySQL,已经成为IT领域中不可…...
C语言程序设计——程序流程控制方法(一)
C语言关系运算符 ---等于ab!不等于a!b<、>小于和大于a>b 、a<b<、>小于等于、大于等于a>b 、a<b!非!(0)、!(NULL) 在C99之后,C语言开始支持布尔类型,头文件是stdbool.h。在文中我所演示的所有代码均是C99版。 在C语言上上述关…...
torch.backends.cudnn.benchmark
torch.backends.cudnn.benchmark 的设置对于使用 PyTorch 进行深度学习训练的性能优化至关重要。具体而言,它与 NVIDIA 的 CuDNN(CUDA Deep Neural Network library)库有关,该库是在 GPU 上加速深度神经网络计算的核心组件。 启用…...
SQL Server从0到1——写shell
xp_cmdshell 查看能否使用xpcmd_shell; select count(*) from master.dbo.sysobjects where xtype x and name xp_cmdshell 直接使用xpcmd_shell执行命令: EXEC master.dbo.xp_cmdshell whoami 发现居然无法使用 查看是否存在xp_cmdshell: EXEC…...
计算圆弧的起始角度、终止角度和矩形信息并使用drawArc绘制圆弧
Qt中常用绘制圆弧的库函数: //函数原型 void QPainter::drawArc(const QRectF &rectangle, int startAngle, int spanAngle)Qt规定1约占16个像素,比如一个完整的圆等于360度,对应的像素角度就是 5760度(16 * 360)…...
C++ Trie树模版 及模版题 || Trie字符串统计
Trie树:用来高效的存储和查找字符串集合的数据结构。 维护一个字符串集合,支持两种操作: I x 向集合中插入一个字符串 x ; Q x 询问一个字符串在集合中出现了多少次。 共有 N 个操作,所有输入的字符串总长度不超过 1…...
Spark 之 入门讲解详细版(1)
1、简介 1.1 Spark简介 Spark是加州大学伯克利分校AMP实验室(Algorithms, Machines, and People Lab)开发通用内存并行计算框架。Spark在2013年6月进入Apache成为孵化项目,8个月后成为Apache顶级项目,速度之快足见过人之处&…...
通过Wrangler CLI在worker中创建数据库和表
官方使用文档:Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后,会在本地和远程创建数据库: npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库: 现在,您的Cloudfla…...
线程与协程
1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指:像函数调用/返回一样轻量地完成任务切换。 举例说明: 当你在程序中写一个函数调用: funcA() 然后 funcA 执行完后返回&…...
CentOS下的分布式内存计算Spark环境部署
一、Spark 核心架构与应用场景 1.1 分布式计算引擎的核心优势 Spark 是基于内存的分布式计算框架,相比 MapReduce 具有以下核心优势: 内存计算:数据可常驻内存,迭代计算性能提升 10-100 倍(文档段落:3-79…...
服务器硬防的应用场景都有哪些?
服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...
《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》
在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中࿰…...
什么是库存周转?如何用进销存系统提高库存周转率?
你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...
【android bluetooth 框架分析 04】【bt-framework 层详解 1】【BluetoothProperties介绍】
1. BluetoothProperties介绍 libsysprop/srcs/android/sysprop/BluetoothProperties.sysprop BluetoothProperties.sysprop 是 Android AOSP 中的一种 系统属性定义文件(System Property Definition File),用于声明和管理 Bluetooth 模块相…...
【HarmonyOS 5 开发速记】如何获取用户信息(头像/昵称/手机号)
1.获取 authorizationCode: 2.利用 authorizationCode 获取 accessToken:文档中心 3.获取手机:文档中心 4.获取昵称头像:文档中心 首先创建 request 若要获取手机号,scope必填 phone,permissions 必填 …...
AI书签管理工具开发全记录(十九):嵌入资源处理
1.前言 📝 在上一篇文章中,我们完成了书签的导入导出功能。本篇文章我们研究如何处理嵌入资源,方便后续将资源打包到一个可执行文件中。 2.embed介绍 🎯 Go 1.16 引入了革命性的 embed 包,彻底改变了静态资源管理的…...
