当前位置: 首页 > news >正文

回文链表【链表】

Problem: 234. 回文链表

文章目录

  • 思路 & 解题方法
  • 复杂度
  • Code

思路 & 解题方法

先转成列表。

复杂度

时间复杂度:

添加时间复杂度, 示例: O ( n ) O(n) O(n)

空间复杂度:

添加空间复杂度, 示例: O ( n ) O(n) O(n)

Code

# Definition for singly-linked list.
# class ListNode:
#     def __init__(self, val=0, next=None):
#         self.val = val
#         self.next = next
class Solution:def isPalindrome(self, head: Optional[ListNode]) -> bool:l = []while head:l.append(head.val)head = head.nextleft, right = 0, len(l) - 1while left <= right:if l[left] != l[right]:return Falseleft += 1right -= 1return True

相关文章:

回文链表【链表】

Problem: 234. 回文链表 文章目录 思路 & 解题方法复杂度Code 思路 & 解题方法 先转成列表。 复杂度 时间复杂度: 添加时间复杂度, 示例&#xff1a; O ( n ) O(n) O(n) 空间复杂度: 添加空间复杂度, 示例&#xff1a; O ( n ) O(n) O(n) Code # Definition for si…...

Linux Perf 介绍

文章目录 前言 二、安装Perf三、二级命令3.1 perf list3.2 perf record/report3.3 perf stat3.4 perf top 四、使用火焰图进行性能分析4.1 下载火焰图可视化生成器4.2 使用perf采集数据4.3 生成火焰图参考资料 前言 perf是一款Linux性能分析工具&#xff0c;内置在Linux内核的…...

【论文阅读】Variational Graph Auto-Encoder

0、基本信息 会议&#xff1a;2016-NIPS作者&#xff1a;Thomas N. Kipf&#xff0c;Max Welling文章链接&#xff1a;Variational Graph Auto-Encoder代码链接&#xff1a;Variational Graph Auto-Encoder 1、介绍 本文提出一个变分图自编码器&#xff0c;一个基于变分自编…...

如何把电脑中的项目快速传进Github中?

一、打开GitHub网站:https:github.com 登录自己的个人账号 1.新建一个项目 2.用鼠标直接拖拽电脑中的项目文件夹与文件到新创建的项目中点击保存即可。...

Plantuml之nwdiag网络图语法介绍(二十九)

简介&#xff1a; CSDN博客专家&#xff0c;专注Android/Linux系统&#xff0c;分享多mic语音方案、音视频、编解码等技术&#xff0c;与大家一起成长&#xff01; 优质专栏&#xff1a;Audio工程师进阶系列【原创干货持续更新中……】&#x1f680; 优质专栏&#xff1a;多媒…...

MyBatis接口的方法上使用,定义对应的 SQL 操作

目录标题 一、Mapper&#xff1a;二、Select、Insert、Update、Delete&#xff1a;三、Results、Result&#xff1a;四、Param&#xff1a;五、# 和 $&#xff1a; MyBatis 是一款基于 Java 的持久层框架&#xff0c;它通过简化数据库操作来帮助开发者构建更好的数据库访问应用…...

(20)Linux初始文件描述符

前言&#xff1a;本章我们介绍 O_WRONLY, O_TRUNC, O_APPEND 和 O_RDONLY。之后我们开始讲解文件描述符。 一、系统传递标记位 1、O_WRONLY C 语言在 w 模式打开文件时&#xff0c;文件内容是会被清空的&#xff0c;但是 O_WRONLY 好像并非如此&#xff1f; 代码演示&…...

draw.io基础操作和代码高效画图进阶

文章目录 一、基础操作1、链接2、等比例变形3、复制4、插入表格 二、在线打开三、插入—功能聚集地1、插入图片2、插入画笔3、插入布局4、导出 四、图码转换——高效画图1、通用图码转换2、流程图生成&#xff1a;使用mermaid语言生成图&#xff1a; 五、图码转换高效画图的典型…...

2024-01-04 用llama.cpp部署本地llama2-7b大模型

点击 <C 语言编程核心突破> 快速C语言入门 用llama.cpp部署本地llama2-7b大模型 前言一、下载llama.cpp以及llama2-7B模型文件二、具体调用总结 前言 要解决问题: 使用一个准工业级大模型, 进行部署, 测试, 了解基本使用方法. 想到的思路: llama.cpp, 不必依赖显卡硬件…...

HTTP打怪升级之路

新手村 上个世纪80年代末&#xff0c;有一天&#xff0c;Tim Berners-Lee正在工作&#xff0c;他需要与另一台计算机上的同事共享一个文件。他尝试使用电子邮件&#xff0c;但发现电子邮件不能发送二进制文件。Tim Berners-Lee意识到&#xff0c;他需要一种新的协议来共享二进制…...

axure RP9.0安装字体图标库fontawesome

字体图库地址: Font AwesomeThe internets icon library toolkit. Used by millions of designers, devs, & content creators. Open-source. Always free. Always awesome.https://fontawesome.com/v6/download进入后下载想要的版本如我是6.3 下载后得到压缩包,解压之后…...

PiflowX组件-ReadFromUpsertKafka

ReadFromUpsertKafka组件 组件说明 upsert方式从Kafka topic中读取数据。 计算引擎 flink 有界性 Unbounded 组件分组 kafka 端口 Inport&#xff1a;默认端口 outport&#xff1a;默认端口 组件属性 名称展示名称默认值允许值是否必填描述例子kafka_hostKAFKA_HO…...

keil 5 ARM CC编译错误和警告解释大全(3)序列号2000-3000

2001年&#xff1a;已声明虚拟参数&#xff0c;但从未使用过 2002年&#xff1a;虚拟参数重新定义为do变量 2003&#xff1a;无法优化&#xff1a;常量/表达式传递给可能修改的变量 2004&#xff1a;重新维度的数组作为参数传递 2005&#xff1a;重维度数组等价 2006&…...

CentOS 7 实战指南:文件或目录的权限操作命令详解

前言 这篇文章详细介绍了文件和目录的常用权限操作命令&#xff0c;并提供了全面的技术解析。通过本文&#xff0c;你将学习如何使用 chmod 和 chown 命令来管理文件和目录的权限&#xff0c;控制用户和用户组的访问权限。无论你是初学者还是有经验的系统管理员&#xff0c;这…...

我的第一个前端项目,vue项目从零开始创建和运行

​入门前端&#xff0c;从基础做起&#xff0c;从零开始新建项目 背景&#xff1a;VUE脚手架项目是一个“单页面”应用&#xff0c;即整个项目中只有1个网页&#xff01; 在VUE脚手架项目中&#xff0c;主要是设计各个“视图组件”&#xff0c;它们都是整个网页中某个部分&…...

【OJ】C++,Java,Python,Go,Rust

for循环语法 // cpp// java// python for i in range(集合): for i, val in enumerate(集合): for v1,v2,v3,... in zip(集合1,集合2,集合3,...):Pair // cpp pair<int, string> first second // java Pair<Integer, String> first() new Pair<>(firstVal…...

Flink 任务指标监控

目录 状态监控指标 JobManager 指标 TaskManager 指标 Job 指标 资源监控指标 数据流监控指标 任务监控指标 网络监控指标 容错监控指标 数据源监控指标 数据存储监控指标 当使用 Apache Flink 进行流处理任务时&#xff0c;可以根据不同的监控需求&#xff0c;监控…...

Go语言程序设计-第7章--接口

Go语言程序设计-第7章–接口 接口类型是对其他类型行为的概括与抽象。 Go 语言的接口的独特之处在于它是隐式实现。对于一个具体的类型&#xff0c;无须声明它实现了哪些接口&#xff0c;只要提供接口所必须实现的方法即可。 7.1 接口即约定 7.2 接口类型 package iotype …...

性能优化-OpenMP基础教程(二)

本文主要介绍OpenMP并行编程技术&#xff0c;编程模型、指令和函数的介绍、以及OpenMP实战的几个例子。希望给OpenMP并行编程者提供指导。 &#x1f3ac;个人简介&#xff1a;一个全栈工程师的升级之路&#xff01; &#x1f4cb;个人专栏&#xff1a;高性能&#xff08;HPC&am…...

让电脑变得更聪明——用python实现五子棋游戏

作为经典的棋类游戏&#xff0c;五子棋深受大众喜爱&#xff0c;但如果仅实现人与人的博弈&#xff0c;那程序很简单&#xff0c;如果要实现人机对战&#xff0c;教会计算机如何战胜人类&#xff0c;那就不是十分容易的事了。本文我们先从简单入手&#xff0c;完成五子棋游戏的…...

国防科技大学计算机基础课程笔记02信息编码

1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制&#xff0c;因此这个了16进制的数据既可以翻译成为这个机器码&#xff0c;也可以翻译成为这个国标码&#xff0c;所以这个时候很容易会出现这个歧义的情况&#xff1b; 因此&#xff0c;我们的这个国…...

XCTF-web-easyupload

试了试php&#xff0c;php7&#xff0c;pht&#xff0c;phtml等&#xff0c;都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接&#xff0c;得到flag...

基于数字孪生的水厂可视化平台建设:架构与实践

分享大纲&#xff1a; 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年&#xff0c;数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段&#xff0c;基于数字孪生的水厂可视化平台的…...

学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2

每日一言 今天的每一份坚持&#xff0c;都是在为未来积攒底气。 案例&#xff1a;OLED显示一个A 这边观察到一个点&#xff0c;怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 &#xff1a; 如果代码里信号切换太快&#xff08;比如 SDA 刚变&#xff0c;SCL 立刻变&#…...

NPOI Excel用OLE对象的形式插入文件附件以及插入图片

static void Main(string[] args) {XlsWithObjData();Console.WriteLine("输出完成"); }static void XlsWithObjData() {// 创建工作簿和单元格,只有HSSFWorkbook,XSSFWorkbook不可以HSSFWorkbook workbook new HSSFWorkbook();HSSFSheet sheet (HSSFSheet)workboo…...

人工智能--安全大模型训练计划:基于Fine-tuning + LLM Agent

安全大模型训练计划&#xff1a;基于Fine-tuning LLM Agent 1. 构建高质量安全数据集 目标&#xff1a;为安全大模型创建高质量、去偏、符合伦理的训练数据集&#xff0c;涵盖安全相关任务&#xff08;如有害内容检测、隐私保护、道德推理等&#xff09;。 1.1 数据收集 描…...

elementUI点击浏览table所选行数据查看文档

项目场景&#xff1a; table按照要求特定的数据变成按钮可以点击 解决方案&#xff1a; <el-table-columnprop"mlname"label"名称"align"center"width"180"><template slot-scope"scope"><el-buttonv-if&qu…...

【LeetCode】算法详解#6 ---除自身以外数组的乘积

1.题目介绍 给定一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O…...

nnUNet V2修改网络——暴力替换网络为UNet++

更换前,要用nnUNet V2跑通所用数据集,证明nnUNet V2、数据集、运行环境等没有问题 阅读nnU-Net V2 的 U-Net结构,初步了解要修改的网络,知己知彼,修改起来才能游刃有余。 U-Net存在两个局限,一是网络的最佳深度因应用场景而异,这取决于任务的难度和可用于训练的标注数…...

【无标题】湖北理元理律师事务所:债务优化中的生活保障与法律平衡之道

文/法律实务观察组 在债务重组领域&#xff0c;专业机构的核心价值不仅在于减轻债务数字&#xff0c;更在于帮助债务人在履行义务的同时维持基本生活尊严。湖北理元理律师事务所的服务实践表明&#xff0c;合法债务优化需同步实现三重平衡&#xff1a; 法律刚性&#xff08;债…...