当前位置: 首页 > news >正文

imgaug库指南(六):从入门到精通的【图像增强】之旅

引言

在深度学习和计算机视觉的世界里,数据是模型训练的基石,其质量与数量直接影响着模型的性能。然而,获取大量高质量的标注数据往往需要耗费大量的时间和资源。正因如此,数据增强技术应运而生,成为了解决这一问题的关键所在。而imgaug,作为一个功能强大的图像增强库,为我们提供了简便且高效的方法来扩充数据集。本系列博客将带您深入了解如何运用imgaug进行图像增强,助您在深度学习的道路上更进一步。我们将从基础概念讲起,逐步引导您掌握各种变换方法,以及如何根据实际需求定制变换序列。让我们一起深入了解这个强大的工具,探索更多可能性,共同推动深度学习的发展。


前期回顾

链接主要内容
imgaug库指南(一):从入门到精通的【图像增强】之旅介绍了imgaug库的主要功能、安装方式、提供一个简单的数据增强示例(针对一副图像)
imgaug库指南(二):从入门到精通的【图像增强】之旅介绍了如何利用imgaug库对批量图像进行数据增强并可视化
imgaug库指南(三):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 高斯模糊
imgaug库指南(四):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 均值模糊
imgaug库指南(五):从入门到精通的【图像增强】之旅详细介绍了imgaug库的数据增强方法 —— 中值模糊/滤波,并介绍了如何利用【中值滤波】过滤椒盐噪声

在本博客中,我们将向您详细介绍imgaug库的数据增强方法 —— 双边模糊/滤波


双边模糊/滤波(BilateralBlur)

功能介绍

iaa.BilateralBlurimgaug库中的一个方法,用于对图像进行双边模糊。双边模糊是一种特殊的模糊技术,它在模糊图像的同时考虑了像素的空间信息和灰度值信息。这意味着双边模糊可以更好地保护图像的边缘和细节,同时去除噪声。

语法

import imgaug.augmenters as iaa
aug = iaa.BilateralBlur(d=(3, 10), sigma_color=(10, 250), sigma_space=(10, 250))
  • d: 滤波过程中每个像素邻域的直径;

    • d为整数,则每个像素邻域的直径为d;
    • d为包含两个整数的元组 (a, b),直径将从 [a…b] 区间中随机采样;
  • sigma_space: 控制模糊程度的空间标准差。较大的值会导致更强的模糊效果。

    • sigma_space为整数,则空间标准差为sigma_space
    • sigma_space为包含两个整数的元组 (a, b),空间标准差将从 [a…b] 区间中随机采样;
  • sigma_color: 控制模糊程度的颜色标准差。较大的值会导致更强的模糊效果。

    • sigma_color为整数,则空间标准差为sigma_color
    • sigma_color为包含两个整数的元组 (a, b),空间标准差将从 [a…b] 区间中随机采样;

示例代码

  1. 使用不同标准差参数
import cv2
import imgaug.augmenters as iaa
import matplotlib.pyplot as plt# 读取图像
img_path = r"D:\python_project\lena.png"
img = cv2.imread(img_path)
image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)# 创建双边模糊增强器
aug1 = iaa.BilateralBlur(d=7, sigma_color=50, sigma_space=50)
aug2 = iaa.BilateralBlur(d=7, sigma_color=150, sigma_space=150)
aug3 = iaa.BilateralBlur(d=7, sigma_color=200, sigma_space=200)# 对图像进行双边模糊处理
blurred_image1 = aug1(image=image)
blurred_image2 = aug2(image=image)
blurred_image3 = aug3(image=image)# 展示原始图像和模糊后的图像
fig, axes = plt.subplots(2, 2, figsize=(10, 10))
axes[0][0].imshow(image)
axes[0][0].set_title("Original Image")
axes[0][1].imshow(blurred_image1)
axes[0][1].set_title("Blurred Image1")
axes[1][0].imshow(blurred_image2)
axes[1][0].set_title("Blurred Image2")
axes[1][1].imshow(blurred_image3)
axes[1][1].set_title("Blurred Image3")
plt.show()

运行结果如下:

图1 原图及中值模糊/滤波结果可视化

注意事项:

  1. 性能考虑:双边模糊是一种相对较耗时的操作。因此,在处理大图像或视频时,需要考虑到计算资源的需求。
  2. 结果的可重复性:由于双边模糊是非线性操作,每次应用可能会产生稍微不同的结果。如果你需要结果的可重复性,可以使用aug.to_deterministic()方法将增强器转换为确定性状态。

总结

iaa.BilateralBlurimgaug库中的一个非常有用的数据增强方法。它是一种非线性的滤波方法,结合了图像的空间邻近度和像素值相似度,旨在达到保边去噪的目的。双边滤波器的好处是可以做边缘保存,它能够有效地将影像上的噪声去除,同时保存影像上的边缘信息。具体来说,双边滤波器在平滑图像的同时,能更好地保留图像中的边缘信息,对于高频细节的保护效果也优于传统的滤波器。然而,双边滤波器对于彩色图像里的高频噪声的处理效果并不理想,可能会保留过多的高频信息。


小结

imgaug是一个强大的图像增强库,它可以帮助你创建出丰富多样的训练数据,从而改进你的深度学习模型的性能。通过定制变换序列和参数,你可以轻松地适应各种应用场景,从计算机视觉到医学影像分析。随着深度学习的发展,imgaug在未来将继续发挥重要作用。因此,将imgaug纳入你的数据增强工具箱是一个明智的选择。

参考链接


结尾

亲爱的读者,首先感谢抽出宝贵的时间来阅读我们的博客。我们真诚地欢迎您留下评论和意见,因为这对我们来说意义非凡。
俗话说,当局者迷,旁观者清。的客观视角对于我们发现博文的不足、提升内容质量起着不可替代的作用。
如果您觉得我们的博文给您带来了启发,那么,希望能为我们点个免费的赞/关注您的支持和鼓励是我们持续创作的动力
请放心,我们会持续努力创作,并不断优化博文质量,只为给带来更佳的阅读体验。
再次感谢的阅读,愿我们共同成长,共享智慧的果实!

相关文章:

imgaug库指南(六):从入门到精通的【图像增强】之旅

引言 在深度学习和计算机视觉的世界里,数据是模型训练的基石,其质量与数量直接影响着模型的性能。然而,获取大量高质量的标注数据往往需要耗费大量的时间和资源。正因如此,数据增强技术应运而生,成为了解决这一问题的…...

stable diffusion 人物高级提示词(五)场景、特效、拍摄手法、风格

一、场景 场景Promptindoor室内outdoor室外cityscape城市景色countryside乡村beach海滩forest森林mountain山脉snowfield雪原skyscraper摩天大楼ancient monument古代遗迹cathedral大教堂library图书馆museum博物馆office building办公大楼restaurant餐厅street market街头市场…...

智能分析网关V4智慧港口码头可视化视频智能监管方案

一、需求背景 近年来,水利港口码头正在进行智能化建设,现场管理已经是重中之重。港口作为货物、集装箱堆放及中转机构,具有昼夜不歇、天气多变、环境恶劣等特性,安全保卫工作显得更加重要。港口码头的巡检现场如何高效、快捷地对…...

docker部署kibana

1,简介 官网 kibana 2,安装docker 参考 linux安装docker 3,准备 Kibana 配置文件 # 进入主节点配置文件目录 cd /export/server/docker/kibana/config # 编辑单机版配置文件 vi kibana.ymlkibana.yml内容 # 主机地址,可以是…...

【AI视野·今日CV 计算机视觉论文速览 第283期】Thu, 4 Jan 2024

AI视野今日CS.CV 计算机视觉论文速览 Thu, 4 Jan 2024 Totally 85 papers 👉上期速览✈更多精彩请移步主页 Daily Computer Vision Papers LEAP-VO: Long-term Effective Any Point Tracking for Visual Odometry Authors Weirong Chen, Le Chen, Rui Wang, Marc P…...

sort实现自定义排序方法详解

使用 sort 实现自定义排序 目录 使用 sort 实现自定义排序1.sort 的基本用法2.sort 实现自定义排序3.结构体重载进行比较 1.sort 的基本用法 sort 库函数需要引入头文件algorithm,是一种排序算法,使用的排序逻辑可以看成是效率很高的快速排序或其的改进版本。平均时…...

【攻防世界】Reverse——secret-galaxy-300 writeup

由main函数查看相关代码,但是代码中并没有直接的关于flag的信息: int __cdecl main(int argc, const char **argv, const char **envp) {__main();fill_starbase(&starbase);print_starbase((int)&starbase);return 0; } void __cdecl fill_sta…...

Github Copilot 快速入门

GitHub Copilot 是一个由 GitHub 推出的人工智能编程助手,旨在帮助开发者通过自动代码建议和补全来提高编程效率和质量。作为一个人工智能配对程序员,它能够理解你的代码意图,并提供相关的代码片段,以帮助你更快地编写代码。这种技…...

c# wpf 的触发器,触发器Trigger种类,每个触发器的使用说明

触发器是一种强大的声明性机制,用于根据指定条件更改控件的外观或行为。触发器主要分为以下几种类型: Property Trigger 说明:当绑定到控件某个依赖属性的值发生改变时,Property Trigger会执行预定义的一组设置。例如,…...

计算机毕业设计 SpringBoot的乡村养老服务管理系统 Javaweb项目 Java实战项目 前后端分离 文档报告 代码讲解 安装调试

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点…...

AMP 通讯RPMsg

参考 RPMsg:协议简介_rpmsg协议-CSDN博客 【软件架构】【通信】S32G IPCF - 知乎 openamp https://www.cnblogs.com/sky-heaven/p/14085800.html virtualIO 虚拟化技术 — VirtIO 虚拟设备接口标准 - 知乎 Virtio-fs介绍与性能优化_guest docker Docker Docs 扫…...

【ECMAScript】WebSocket模拟HTTP功能的实践:Promise+WebSocket+EventEmitter+Queue

1. 前言 本篇将结合Promise、WebSocket、EventEmitter和Queue,做一次实践:用WebSocket来模拟HTTP的功能。先不用关心它的用处,就当一次对知识点的整合吧。 2. MockHTTP 方法说明request(params, callback?) 功能:发起请求&…...

Linux 软raid - - Barrier

什么是Barriers 在linux软raid中,用来处理正常IO和同步IO的并发问题,可以简单理解为专用于软raid的锁。 软raid在做resync/recovery,或者配置操作时需要raise 屏障,于此同时必须暂停正常IO。 barrier是可以被多次raise的一个计数…...

航空公司管理系统(迷你版12306)

要求 今天分享一个之前辅导留学生的作业,作业要求如下: Project E: Airways Management System Overall description: Your team is employed by an Airways company for the implementation of a computer system responsible for a large part of th…...

嵌入式硬件电路原理图之跟随电路

描述 电压跟随电路 电压跟随器是共集电极电路,信号从基极输入,射极输出,故又称射极输出器。基极电压与集电极电压相位相同,即输入电压与输出电压同相。这一电路的主要特点是:高输入电阻、低输出电阻、电压增益近似为…...

学习录

概述 这几年在迷茫中看了不少资料,有觉得写得很棒的,也有写的很糟糕的。所以一直想写这块的总结来进行归纳,同时也希望能给其他处于迷茫中的朋友提供一份高质量的资料列表(也许一个读者也没有),以下清单个人觉得值得反复看以及思…...

MongoDB索引详解

概述 索引是一种用来快速查询数据的数据结构。BTree 就是一种常用的数据库索引数据结构,MongoDB 采用 BTree 做索引,索引创建 colletions 上。MongoDB 不使用索引的查询,先扫描所有的文档,再匹配符合条件的文档。使用索引的查询&…...

一文搞定JVM内存模型

鲁大猿,寻精品资料,帮你构建Java全栈知识体系 www.jiagoujishu.cn 运行时数据区 内存是非常重要的系统资源,是硬盘和 CPU 的中间仓库及桥梁,承载着操作系统和应用程序的实时运行。JVM 内存布局规定了 Java 在运行过程中内存申请、…...

月报总结|Moonbeam 12月份大事一览

一转眼已经到年底啦。本月,Moonbeam基金会发布四个最新战略重点:跨链解决方案、游戏、真实世界资产(RWA)、新兴市场。其中在新兴市场方面,紧锣密鼓地推出与巴西公司Grupo RO的战略合作。 用户教育方面,为了…...

现有网络模型的使用及修改(VGG16为例)

VGG16 修改默认路径 import os os.environ[TORCH_HOME] rD:\Pytorch\pythonProject\vgg16 # 下载位置太大了(140多G)不提供直接下载 train_set torchvision.datasets.ImageNet(root./data_image_net, splittrain, downloadTrue, transformtorchvis…...

pam_env.so模块配置解析

在PAM(Pluggable Authentication Modules)配置中, /etc/pam.d/su 文件相关配置含义如下: 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块,负责验证用户身份&am…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接:3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯,要想要能够将所有的电脑解锁&#x…...

系统设计 --- MongoDB亿级数据查询优化策略

系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log,共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题,不能使用ELK只能使用…...

Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务

通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别

OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...

什么?连接服务器也能可视化显示界面?:基于X11 Forwarding + CentOS + MobaXterm实战指南

文章目录 什么是X11?环境准备实战步骤1️⃣ 服务器端配置(CentOS)2️⃣ 客户端配置(MobaXterm)3️⃣ 验证X11 Forwarding4️⃣ 运行自定义GUI程序(Python示例)5️⃣ 成功效果![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/55aefaea8a9f477e86d065227851fe3d.pn…...

uniapp手机号一键登录保姆级教程(包含前端和后端)

目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号(第三种)后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...

Python 实现 Web 静态服务器(HTTP 协议)

目录 一、在本地启动 HTTP 服务器1. Windows 下安装 node.js1)下载安装包2)配置环境变量3)安装镜像4)node.js 的常用命令 2. 安装 http-server 服务3. 使用 http-server 开启服务1)使用 http-server2)详解 …...

深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏

一、引言 在深度学习中,我们训练出的神经网络往往非常庞大(比如像 ResNet、YOLOv8、Vision Transformer),虽然精度很高,但“太重”了,运行起来很慢,占用内存大,不适合部署到手机、摄…...

9-Oracle 23 ai Vector Search 特性 知识准备

很多小伙伴是不是参加了 免费认证课程(限时至2025/5/15) Oracle AI Vector Search 1Z0-184-25考试,都顺利拿到certified了没。 各行各业的AI 大模型的到来,传统的数据库中的SQL还能不能打,结构化和非结构的话数据如何和…...