【面试高频算法解析】算法练习2 回溯(Backtracking)
前言
本专栏旨在通过分类学习算法,使您能够牢固掌握不同算法的理论要点。通过策略性地练习精选的经典题目,帮助您深度理解每种算法,避免出现刷了很多算法题,还是一知半解的状态
专栏导航
- 二分查找
- 回溯(Backtracking)
- 双指针
- 滑动窗口
- 深度优先搜索
- 广度优先搜索
- 贪心算法
- 单调队列
- 堆(Heap)
算法解析
回溯(Backtracking)是一种通过试错来解决问题的算法思想。当它通过尝试分步去解决一个问题时,如果发现现有的分步答案不能得到有效的正确的解答时,它将取消上一步甚至是上几步的计算,再通过其他的可能的分步解答再次尝试寻找问题的答案。
回溯法通常用递归方式来实现,在解决问题的过程中尝试各种可能的分步方法。如果某一步骤失败了,回溯算法会退回到上一步骤,然后尝试另一种方法。回溯法常用于解决如下问题:
- 组合问题:求解一个问题的所有满足条件的组合方式。
- 排列问题:求解一个问题的所有满足条件的排列方式。
- 划分问题:求解将一个对象分成几部分的方法。
- 子集构造问题:求解一个集合的所有子集。
- 棋盘问题:如八皇后问题、解数独和跳马问题等。
- 图的遍历问题:如哈密顿路径问题、图的着色问题等。
回溯算法的关键在于解决决策树的遍历过程中,如何剪枝。剪枝通过检测是否已经不可能得到正确的解来减少不必要的计算。在实现回溯算法时,通常有以下几个步骤:
- 选择:选择下一个可能的分步解答。
- 约束:检查到目前为止的解答序列是否满足约束条件(即是否“合法”)。
- 目标:检查到目前为止的解答序列是否满足解答条件(即是否已经找到一个解答)。
如果以上步骤中的任何一步不能继续下去,那么就执行回溯(返回上一步),尝试其他可能的路径。这种算法可以看作穷举搜索的一种优化,它利用问题的约束条件大大减少了搜索空间。
回溯算法和深度优先搜索(DFS)有密切的关系,实际上,回溯算法可以视为带有剪枝功能的深度优先搜索。在实现时,通常使用递归方法来模拟整个决策树的深度优先遍历过程,递归结构的本质上是栈结构,与DFS的实现方式一致。
实战练习
组合总和
给你一个 无重复元素 的整数数组 candidates 和一个目标整数 target ,找出 candidates 中可以使数字和为目标数 target 的 所有 不同组合 ,并以列表形式返回。你可以按 任意顺序 返回这些组合。
candidates 中的 同一个 数字可以 无限制重复被选取 。如果至少一个数字的被选数量不同,则两种组合是不同的。
对于给定的输入,保证和为 target 的不同组合数少于 150 个。
示例 1:
输入:candidates = [2,3,6,7], target = 7
输出:[[2,2,3],[7]]
解释:
2 和 3 可以形成一组候选,2 + 2 + 3 = 7 。注意 2 可以使用多次。
7 也是一个候选, 7 = 7 。
仅有这两种组合。
示例 2:
输入: candidates = [2,3,5], target = 8
输出: [[2,2,2,2],[2,3,3],[3,5]]
示例 3:
输入: candidates = [2], target = 1
输出: []
提示:
1 <= candidates.length <= 30
2 <= candidates[i] <= 40
candidates 的所有元素 互不相同
1 <= target <= 40
官方题解
全排列II
给定一个可包含重复数字的序列 nums ,按任意顺序 返回所有不重复的全排列。
示例 1:
输入:nums = [1,1,2]
输出:
[[1,1,2],
[1,2,1],
[2,1,1]]
示例 2:
输入:nums = [1,2,3]
输出:[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
提示:
1 <= nums.length <= 8
-10 <= nums[i] <= 10
官方题解
单词搜索
给定一个 m x n 二维字符网格 board 和一个字符串单词 word 。如果 word 存在于网格中,返回 true ;否则,返回 false 。
单词必须按照字母顺序,通过相邻的单元格内的字母构成,其中“相邻”单元格是那些水平相邻或垂直相邻的单元格。同一个单元格内的字母不允许被重复使用。
示例 1:
输入:board = [[“A”,“B”,“C”,“E”],[“S”,“F”,“C”,“S”],[“A”,“D”,“E”,“E”]], word = “ABCCED”
输出:true
示例 2:
输入:board = [[“A”,“B”,“C”,“E”],[“S”,“F”,“C”,“S”],[“A”,“D”,“E”,“E”]], word = “SEE”
输出:true
示例 3:
输入:board = [[“A”,“B”,“C”,“E”],[“S”,“F”,“C”,“S”],[“A”,“D”,“E”,“E”]], word = “ABCB”
输出:false
提示:
m == board.length
n = board[i].length
1 <= m, n <= 6
1 <= word.length <= 15
board 和 word 仅由大小写英文字母组成
进阶: 你可以使用搜索剪枝的技术来优化解决方案,使其在 board 更大的情况下可以更快解决问题?
官方题解
相关文章:

【面试高频算法解析】算法练习2 回溯(Backtracking)
前言 本专栏旨在通过分类学习算法,使您能够牢固掌握不同算法的理论要点。通过策略性地练习精选的经典题目,帮助您深度理解每种算法,避免出现刷了很多算法题,还是一知半解的状态 专栏导航 二分查找回溯(Backtracking&…...

认识Git
🌎初识Git 初识Git 什么是Git Git的安装 Centos平台安装Git Ubuntu平台安装Git Git的基本操作 创建远程仓库 配置Git 认识工作区、暂存区与版本库 添加文件到暂存区 将暂存区文件提交至本…...
@RequestParam,@RequestBody和@PathVariable 区别
RequestParam,RequestBody和PathVariable 这三者是spring常见的接受前端数据的注解,那么他们分别是接受什么的前端数据呢? RequestParam:这个注解主要用于处理请求参数,尤其是GET请求中的查询参数和表单参数。它可以用…...

vue3组件传参
1、props: 2、自定义事件子传父 3、mitt任意组件通讯 4、v-model通讯(v-model绑定在组件上) (1)V2中父子组件的v-model通信,限制了popos接收的属性名必须为value和emit触发的事件名必须为input,所以有时会有冲突; 父组件: 子组件: (2)V3中:限制了popos接收的属性名…...
React16源码: React中创建更新的方式及ReactDOM.render的源码实现
React当中创建更新的主要方式 ReactDOM.render || hydrate 这两个API都是我们要把整个应用第一次进行渲染到我们的页面上面能够展现出来我们整个应用的样子的一个过程这是初次渲染 setState 后续更新应用 forceUpdate 后续更新应用 replaceState 在后续被舍弃 关于 ReactDOM…...
CentOS 7 系列默认的网卡接口名称
CentOS 7 系列默认的网卡接口是随机的,如果要修改网卡名称以 eth 开头,有两种方式。 方法一:安装系统时 在安装界面移动光标到 Install Centos 7.按 TAB 键 在出现的代码的末尾添加:net.ifnames0 biosdevname0.按下回车开始安装即…...
多文件上传
HTML中实现多文件上传是通过用<input type"file">元素的multiple属性,以下简单描述多文件上传的步骤 HTML表单准备,使用<input type"file">元素,并为其添加multiple属性,以允许用户选择多个文件…...
2024.1.7力扣每日一题——赎金信
2024.1.7 题目来源我的题解方法一 哈希表方法二 数组 题目来源 力扣每日一题;题序:383 我的题解 方法一 哈希表 使用哈希表记录ransomNote中所需字符的数量,然后遍历magazine并将哈希表中存在的对应的数量减一 时间复杂度:O(nm…...

C#中List<T>底层原理剖析
C#中List底层原理剖析 1. 基础用法2. List的Capacity与Count:3.List的底层原理3.1. 构造3.2 Add()接口3.3 Remove()接口3.4 Inster()接口3.5 Clear()接口3.6 Contains()接口3.7 ToArray()接口3.8 Find()接口3.8 Sort()接口 4. 总结5. 参考 1. 基础用法 list.Max() …...
Leetcode 3003. Maximize the Number of Partitions After Operations
Leetcode 3003. Maximize the Number of Partitions After Operations 1. 解题思路2. 代码实现 题目链接:10038. Maximize the Number of Partitions After Operations 1. 解题思路 这一题我看实际比赛当中只有72个人做出来,把我吓得够呛,…...
MySQL第一讲:MySQL知识体系详解(P6精通)
MySQL知识体系详解(P6精通) MySQL不论在实践还是面试中,都是频率最高的。本系列主要对MySQL知识体系梳理,将给大家构建JVM核心知识点全局知识体系,本文是MySQL第一讲,MySQL知识体系详解。 文章目录 MySQL知识体系详解(P6精通)1、MySQL学习建议1.1、为什么学习 MySQL?1.2、…...

逻辑回归简单案例分析--鸢尾花数据集
文章目录 1. IRIS数据集介绍2. 具体步骤2.1 手动将数据转化为numpy矩阵2.1.1 从csv文件数据构建Numpy数据2.1.2 模型的搭建与训练2.1.3 分类器评估2.1.4 分类器的分类报告总结2.1.5 用交叉验证(Cross Validation)来验证分类器性能2.1.6 完整代码…...

Python print 高阶玩法
Python print 高阶玩法 当涉及到在Python中使用print函数时,有许多方式可以玩转文本样式、字体和颜色。在此将深入探讨这些主题,并介绍一些print函数的高级用法。 1. 基本的文本样式与颜色设置 使用ANSI转义码 ANSI转义码是一种用于在终端࿰…...

Wpf 使用 Prism 实战开发Day09
设置模块设计 1.效果图 一.系统设置模块,主要有个性化(用于更改主题颜色),系统设置,关于更多,3个功能点。 个性化的颜色内容样式,主要是从 Material Design Themes UI简称md、提供的demo里复制代码过来使用的。 1.设置…...

网络端口(包括TCP端口和UDP端口)的作用、定义、分类,以及在视频监控和流媒体通信中的定义
目 录 一、什么地方会用到网络端口? 二、端口的定义和作用 (一)TCP协议和UDP协议 (二)端口的定义 (三)在TCP/IP体系中,端口(TCP和UDP)的作用 (…...
flink如何写入es
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、写入到Elasticsearch5二、写入到Elasticsearch7总结 前言 Flink sink 流数据写入到es5和es7的简单示例。 一、写入到Elasticsearch5 pom maven依赖 <d…...
Java、Python、C++和C#的界面开发框架和工具的重新介绍
好的,以下是Java、Python、C和C#的界面开发框架和工具的重新介绍: Java界面开发: Swing: 是Java提供的一个基于组件的GUI工具包,可以创建跨平台的图形用户界面。它提供了丰富的组件和布局管理器,使得界面开发相对简单。…...

Java二叉树的遍历以及最大深度问题
Java学习面试指南:https://javaxiaobear.cn 1、树的相关概念 1、树的基本定义 树是我们计算机中非常重要的一种数据结构,同时使用树这种数据结构,可以描述现实生活中的很多事物,例如家谱、单位的组织架构、等等。 树是由n&#…...

Apollo 9.0搭建问题记录
虚拟机安装 可以看这个:https://blog.csdn.net/qq_45138078/article/details/129815408 写的很详细 内存 为了学习 Apollo ,所以只是使用了虚拟机,内存得大一点(128G),第一次,就是因为分配内…...

【心得】PHP文件包含高级利用攻击面个人笔记
目录 一、nginx日志文件包含 二、临时文件包含 三、php的session文件包含 四、pear文件包含 五 、远程文件包含 文件包含 include "/var/www/html/flag.php"; 一 文件名可控 $file$_GET[file]; include $file.".php"; //用php伪协议 ࿰…...

【Axure高保真原型】引导弹窗
今天和大家中分享引导弹窗的原型模板,载入页面后,会显示引导弹窗,适用于引导用户使用页面,点击完成后,会显示下一个引导弹窗,直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...
【Linux】shell脚本忽略错误继续执行
在 shell 脚本中,可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行,可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令,并忽略错误 rm somefile…...

智能在线客服平台:数字化时代企业连接用户的 AI 中枢
随着互联网技术的飞速发展,消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁,不仅优化了客户体验,还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用,并…...

【开发技术】.Net使用FFmpeg视频特定帧上绘制内容
目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法,当前调用一个医疗行业的AI识别算法后返回…...
智能AI电话机器人系统的识别能力现状与发展水平
一、引言 随着人工智能技术的飞速发展,AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术,在客户服务、营销推广、信息查询等领域发挥着越来越重要…...

浪潮交换机配置track检测实现高速公路收费网络主备切换NQA
浪潮交换机track配置 项目背景高速网络拓扑网络情况分析通信线路收费网络路由 收费汇聚交换机相应配置收费汇聚track配置 项目背景 在实施省内一条高速公路时遇到的需求,本次涉及的主要是收费汇聚交换机的配置,浪潮网络设备在高速项目很少,通…...
tomcat入门
1 tomcat 是什么 apache开发的web服务器可以为java web程序提供运行环境tomcat是一款高效,稳定,易于使用的web服务器tomcathttp服务器Servlet服务器 2 tomcat 目录介绍 -bin #存放tomcat的脚本 -conf #存放tomcat的配置文件 ---catalina.policy #to…...
苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会
在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...

Ubuntu系统复制(U盘-电脑硬盘)
所需环境 电脑自带硬盘:1块 (1T) U盘1:Ubuntu系统引导盘(用于“U盘2”复制到“电脑自带硬盘”) U盘2:Ubuntu系统盘(1T,用于被复制) !!!建议“电脑…...

Canal环境搭建并实现和ES数据同步
作者:田超凡 日期:2025年6月7日 Canal安装,启动端口11111、8082: 安装canal-deployer服务端: https://github.com/alibaba/canal/releases/1.1.7/canal.deployer-1.1.7.tar.gz cd /opt/homebrew/etc mkdir canal…...