当前位置: 首页 > news >正文

基于深度学习的停车位关键点检测系统(代码+原理)

摘要:

DMPR-PS是一种基于深度学习的停车位检测系统,旨在实时监测和识别停车场中的停车位。该系统利用图像处理和分析技术,通过摄像头获取停车场的实时图像,并自动检测停车位的位置和状态。本文详细介绍了DMPR-PS系统的算法原理、创新点和实验结果,并对其性能进行了评估。
在这里插入图片描述

算法创新:

DMPR-PS系统的算法创新主要体现在以下几个方面:

  1. 深度学习模型:DMPR-PS系统采用了深度学习模型来进行停车位的检测。通过大规模数据集的训练,该模型可以自动学习停车位的特征,并准确地进行检测和分类。
    在这里插入图片描述

  2. 多尺度检测:为了应对不同大小的停车位,DMPR-PS系统使用了多尺度检测策略。通过在不同尺度下进行检测,可以提高系统对各种大小停车位的检测准确率。

  3. 实时性能:DMPR-PS系统具有较高的实时性能。它能够快速处理实时视频流,并在短时间内完成停车位的检测和识别,满足实时监测的需求。
    在这里插入图片描述

实验结果与结论:

通过对多个停车场场景的实验测试,DMPR-PS系统展现了良好的性能。实验结果表明,该系统在检测准确率和实时性能方面都具有较高的水平。

代码运行

要求:

python版本3.6pytorch版本1.4+

其他要求:

pip install -r requirements.txt
gcn-parking-slot

预训练模型

可以通过以下链接下载两个预训练模型。

链接	代码	描述
Model0	bc0a	使用ps2.0子集进行训练,如[1]所述。
Model1	pgig	使用完整的ps2.0数据集进行训练。

准备数据

可以在此处找到原始的ps2.0数据和标签。提取并组织如下:

├── datasets
│   └── parking_slot
│       ├── annotations
│       ├── ps_json_label 
│       ├── testing
│       └── training

训练和测试

将当前目录导出到PYTHONPATH:

export PYTHONPATH=`pwd`

在这里插入图片描述

演示

python3 tools/demo.py -c config/ps_gat.yaml -m cache/ps_gat/100/models/checkpoint_epoch_200.pth

训练

python3 tools/train.py -c config/ps_gat.yaml

在这里插入图片描述

测试

python3 tools/test.py -c config/ps_gat.yaml -m cache/ps_gat/100/models/checkpoint_epoch_200.pth

代码

import cv2
import time
import torch
import pprint
import numpy as np
from pathlib import Pathfrom psdet.utils.config import get_config
from psdet.utils.common import get_logger
from psdet.models.builder import build_modeldef draw_parking_slot(image, pred_dicts):slots_pred = pred_dicts['slots_pred']width = 512height = 512VSLOT_MIN_DIST = 0.044771278151623496VSLOT_MAX_DIST = 0.1099427457599304HSLOT_MIN_DIST = 0.15057789144568634HSLOT_MAX_DIST = 0.44449496544202816SHORT_SEPARATOR_LENGTH = 0.199519231LONG_SEPARATOR_LENGTH = 0.46875junctions = []for j in range(len(slots_pred[0])):position = slots_pred[0][j][1]p0_x = width * position[0] - 0.5p0_y = height * position[1] - 0.5p1_x = width * position[2] - 0.5p1_y = height * position[3] - 0.5vec = np.array([p1_x - p0_x, p1_y - p0_y])vec = vec / np.linalg.norm(vec)distance =( position[0] - position[2] )**2 + ( position[1] - position[3] )**2 if VSLOT_MIN_DIST <= distance <= VSLOT_MAX_DIST:separating_length = LONG_SEPARATOR_LENGTHelse:separating_length = SHORT_SEPARATOR_LENGTHp2_x = p0_x + height * separating_length * vec[1]p2_y = p0_y - width * separating_length * vec[0]p3_x = p1_x + height * separating_length * vec[1]p3_y = p1_y - width * separating_length * vec[0]p0_x = int(round(p0_x))p0_y = int(round(p0_y))p1_x = int(round(p1_x))p1_y = int(round(p1_y))p2_x = int(round(p2_x))p2_y = int(round(p2_y))p3_x = int(round(p3_x))p3_y = int(round(p3_y))cv2.line(image, (p0_x, p0_y), (p1_x, p1_y), (255, 0, 0), 2)cv2.line(image, (p0_x, p0_y), (p2_x, p2_y), (255, 0, 0), 2)cv2.line(image, (p1_x, p1_y), (p3_x, p3_y), (255, 0, 0), 2)#cv2.circle(image, (p0_x, p0_y), 3,  (0, 0, 255), 4)junctions.append((p0_x, p0_y))junctions.append((p1_x, p1_y))for junction in junctions:cv2.circle(image, junction, 3,  (0, 0, 255), 4)return imagedef main():cfg = get_config()logger = get_logger(cfg.log_dir, cfg.tag)logger.info(pprint.pformat(cfg))model = build_model(cfg.model)logger.info(model)image_dir = Path(cfg.data_root) / 'testing' / 'outdoor-normal daylight'display = False# load checkpointmodel.load_params_from_file(filename=cfg.ckpt, logger=logger, to_cpu=False)model.cuda()model.eval()if display:car = cv2.imread('images/car.png')car = cv2.resize(car, (512, 512))with torch.no_grad():for img_path in image_dir.glob('*.jpg'):img_name = img_path.stemdata_dict = {} image  = cv2.imread(str(img_path))image0 = cv2.resize(image, (512, 512))image = image0/255.data_dict['image'] = torch.from_numpy(image).float().permute(2, 0, 1).unsqueeze(0).cuda()start_time = time.time()pred_dicts, ret_dict = model(data_dict)sec_per_example = (time.time() - start_time)print('Info speed: %.4f second per example.' % sec_per_example)if display:image = draw_parking_slot(image0, pred_dicts)image[145:365, 210:300] = 0image += carcv2.imshow('image',image.astype(np.uint8))cv2.waitKey(50)save_dir = Path(cfg.output_dir) / 'predictions'save_dir.mkdir(parents=True, exist_ok=True)save_path = save_dir / ('%s.jpg' % img_name)cv2.imwrite(str(save_path), image)if display:cv2.destroyAllWindows()if __name__ == '__main__':main()

结论

DMPR-PS系统是一种基于深度学习的停车位检测系统,通过创新的算法设计和实时性能优化,可以有效地监测和识别停车场中的停车位。该系统在提高停车场资源利用率和管理效率方面具有重要的应用价值。

相关文章:

基于深度学习的停车位关键点检测系统(代码+原理)

摘要&#xff1a; DMPR-PS是一种基于深度学习的停车位检测系统&#xff0c;旨在实时监测和识别停车场中的停车位。该系统利用图像处理和分析技术&#xff0c;通过摄像头获取停车场的实时图像&#xff0c;并自动检测停车位的位置和状态。本文详细介绍了DMPR-PS系统的算法原理、…...

C#,入门教程(09)——运算符的基础知识

上一篇&#xff1a; C#&#xff0c;入门教程(08)——基本数据类型及使用的基础知识https://blog.csdn.net/beijinghorn/article/details/123906998 一、算术运算符号 算术运算符号包括&#xff1a;四则运算 加 , 减-, 乘*, 除/与取模%。 // 加法&#xff0c;运算 int va 1 …...

企业出海数据合规:GDPR中的个人数据与非个人数据之区分

GDPR仅适用于个人数据&#xff0c;这意味着非个人数据不在其适用范围内。因此&#xff0c;个人数据的定义是一个至关重要的因素&#xff0c;因为它决定了处理数据的实体是否要遵守该法规对数据控制者规定的各种义务。尽管如此&#xff0c;什么是个人数据仍然是当前数据保护制度…...

如何在Ubuntu搭建Emlog博客站点并发布至公网可随时远程访问管理界面——“cpolar内网穿透”

文章目录 前言1. 网站搭建1.1 Emolog网页下载和安装1.2 网页测试1.3 cpolar的安装和注册 2. 本地网页发布2.1 Cpolar临时数据隧道2.2.Cpolar稳定隧道&#xff08;云端设置&#xff09;2.3.Cpolar稳定隧道&#xff08;本地设置&#xff09; 3. 公网访问测试总结 前言 博客作为使…...

【金猿CIO展】是石科技CIO侯建业:算力产业赋能,促进数字经济建设

‍ 侯建业 本文由是石科技CIO侯建业撰写并投递参与“数据猿年度金猿策划活动——2023大数据产业年度优秀CIO榜单及奖项”评选。 大数据产业创新服务媒体 ——聚焦数据 改变商业 是石科技&#xff08;江苏&#xff09;有限公司成立于2021年&#xff0c;由国家超级计算无锡中心与…...

TypeScript 类

目录 1、实例 2、创建类的数据成员 3、创建实例化对象 4、完整实例 5、类的继承 6、继承类的方法重写 7、static关键字 8、instanceof运算符 9、访问控制修饰符 10、类和接口 TypeScript 是面向对象的 JavaScript。类描述了所创建的对象共同的属性和方法。支持面向对…...

Oracle分区表

文章目录 A. varchar2类型时间字段(20240102)分区实战1. 表要不要分区2. 将已经存在的表改造为分区表(时间字段&#xff0c;varchar2类型)3. 增加分区3.1 增加分区3.2 置换分区&#xff0c;不会复制索引&#xff0c;不要用这种语法建表&#xff0c;这是专门为置换分区用的3.3 分…...

【leetcode】力扣算法之旋转图像【难度中等】

题目描述 给定一个 n n 的二维矩阵 matrix 表示一个图像。请你将图像顺时针旋转 90 度。 你必须在 原地 旋转图像&#xff0c;这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。 用例 输入&#xff1a; matrix [[1,2,3],[4,5,6],[7,8,9]] 输出&…...

【Java集合类篇】HashMap的数据结构是怎样的?

HashMap的数据结构是怎样的? ✔️HashMap的数据结构✔️ 数组✔️ 链表 ✔️HashMap的数据结构 在Java中&#xff0c;保存数据有两种比较简单的数据结构: 数组和链表&#xff08;或红黑树&#xff09;。 HashMap是 Java 中常用的数据结构&#xff0c;它实现了 Map 接口。Has…...

Spring 应用合并之路(一):摸石头过河 | 京东云技术团队

公司在推进降本增效&#xff0c;在尝试多种手段之后&#xff0c;发现应用太多&#xff0c;每个应用都做跨机房容灾部署&#xff0c;则最少需要 4 台机器&#xff08;称为容器更合适&#xff09;。那么&#xff0c;将相近应用做一个合并&#xff0c;减少维护项目&#xff0c;提高…...

Android13配置selinux让system应用可读sys,proc,SN号

system权限应用读sys,proc目录及SN号 Android13预置的system应用&#xff0c;需要读/sys, /proc目录&#xff0c;读(SN)serial number号, 需要修改selinux配置&#xff0c;否则会报avc错&#xff0e; 其修改方法会比Android11复杂一些&#xff0e; 实现 system_app.te中添加…...

防勒索病毒攻击的关键措施

【作者】朱向东 中原银行 高级工程师 在当今数字化时代&#xff0c;勒索病毒成为了企业和个人面临的一项严峻威胁。勒索病毒攻击可以导致数据丢失、系统瘫痪以及经济损失。为了保护自己和组织的利益&#xff0c;采取一系列的防范措施是至关重要的。下面是一些关键的措施&#…...

代表团坐车 - 华为OD统一考试

OD统一考试(B卷) 分值: 100分 题解: Java / Python / C++ 题目描述 某组织举行会议,来了多个代表团同时到达,接待处只有一辆汽车可以同时接待多个代表团,为了提高车辆利用率,请帮接待员计算可以坐满车的接待方案输出方案数量。 约束: 一个团只能上一辆车,并且代表团…...

运用Jmeter进行登录测试

开始了解Jmeter,写篇关于Jmeter的博客做备忘,这里以苏宁易购网站的登录请求为例实战来说明测试计划元件,创建一个 Web 测试计划。 今天简单介绍Jemeter的入门,Jmeter 的安装这边就跳过,直接讲述如何使用JMETER,如何运用Jmeter进行测试。 a.下载jmeter软件 b.安装…...

Docker学习与应用(四)-容器数据卷

1、容器数据卷 1&#xff09;什么是容器数据卷 docker的理念回顾 将应用和环境打包成一个镜像&#xff01; 数据&#xff1f;如果数据都在容器中&#xff0c;那么我们容器删除&#xff0c;数据就会丢失&#xff01;需求&#xff1a;数据可以持久化 MySQL&#xff0c;容器删…...

CentOS 7.6下HTTP隧道代理的安全性考虑

在CentOS 7.6上配置HTTP隧道代理时&#xff0c;安全性是一个不可忽视的重要因素。以下是对HTTP隧道代理安全性的一些关键考虑因素&#xff1a; 1. 加密和数据安全 使用强加密算法&#xff1a;确保您使用的是经过广泛认可和强化的加密算法&#xff0c;如AES-256-GCM。数据完整…...

Mockito+junit5搞定单元测试

目录 一、简介1.1 单元测试的特点1.2 Mock类框架的使用场景1.3 常见的Mock框架1.3.1 Mockito1.3.2 EasyMock1.3.3 PowerMock1.3.4 Testable1.3.5 比较 二、Mockito的使用2.1 导入pom文件2.2 mock对象和spy对象2.3 初始化mock/spy对象的方式2.4 参数匹配2.5 方法插桩2.6 InjectM…...

PostgreSQL获取当天、昨天、本月、上个月、本年、去年的数据

gps_time为timestamp类型日期字段 获取当天的数据 WHERE DATE_TRUNC(day, gps_time) CURRENT_DATE --或 WHERE DATE(gps_time) CURRENT_DATE获取昨天的数据 WHERE DATE_TRUNC(day, gps_time) CURRENT_DATE - INTERVAL 1 day获取本月的数据 WHERE DATE_TRUNC(month, gps_…...

XCTF:stage1[WriteUP]

从题目中下载到图片&#xff1a; 考虑图片是png&#xff0c;隐写方式有可能是高宽修改&#xff0c;也可能是色相隐藏&#xff0c;色彩通道位隐藏等等 使用stegsolve对图片进行一下伽马、颜色转换 在图片的左上角就显示出了一个二维码 使用QR_Rresearch工具对二维码扫描 获得一…...

STM32CubeMX教程13 ADC - 单通道转换

目录 1、准备材料 2、实验目标 3、ADC概述 4、实验流程 4.0、前提知识 4.1、CubeMX相关配置 4.1.1、时钟树配置 4.1.2、外设参数配置 4.1.3、外设中断配置 4.2、生成代码 4.2.1、外设初始化调用流程 4.2.2、外设中断调用流程 4.2.3、添加其他必要代码 5、常用函数…...

ArcGIS Pro制作水平横向图例+多级标注

今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作&#xff1a;ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等&#xff08;ArcGIS出图图例8大技巧&#xff09;&#xff0c;那这次我们看看ArcGIS Pro如何更加快捷的操作。…...

优选算法第十二讲:队列 + 宽搜 优先级队列

优选算法第十二讲&#xff1a;队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...

鸿蒙DevEco Studio HarmonyOS 5跑酷小游戏实现指南

1. 项目概述 本跑酷小游戏基于鸿蒙HarmonyOS 5开发&#xff0c;使用DevEco Studio作为开发工具&#xff0c;采用Java语言实现&#xff0c;包含角色控制、障碍物生成和分数计算系统。 2. 项目结构 /src/main/java/com/example/runner/├── MainAbilitySlice.java // 主界…...

AI,如何重构理解、匹配与决策?

AI 时代&#xff0c;我们如何理解消费&#xff1f; 作者&#xff5c;王彬 封面&#xff5c;Unplash 人们通过信息理解世界。 曾几何时&#xff0c;PC 与移动互联网重塑了人们的购物路径&#xff1a;信息变得唾手可得&#xff0c;商品决策变得高度依赖内容。 但 AI 时代的来…...

Linux离线(zip方式)安装docker

目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1&#xff1a;修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本&#xff1a;CentOS 7 64位 内核版本&#xff1a;3.10.0 相关命令&#xff1a; uname -rcat /etc/os-rele…...

Kafka入门-生产者

生产者 生产者发送流程&#xff1a; 延迟时间为0ms时&#xff0c;也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于&#xff1a;异步发送不需要等待结果&#xff0c;同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...

Linux系统部署KES

1、安装准备 1.版本说明V008R006C009B0014 V008&#xff1a;是version产品的大版本。 R006&#xff1a;是release产品特性版本。 C009&#xff1a;是通用版 B0014&#xff1a;是build开发过程中的构建版本2.硬件要求 #安全版和企业版 内存&#xff1a;1GB 以上 硬盘&#xf…...

数据库正常,但后端收不到数据原因及解决

从代码和日志来看&#xff0c;后端SQL查询确实返回了数据&#xff0c;但最终user对象却为null。这表明查询结果没有正确映射到User对象上。 在前后端分离&#xff0c;并且ai辅助开发的时候&#xff0c;很容易出现前后端变量名不一致情况&#xff0c;还不报错&#xff0c;只是单…...

Java并发编程实战 Day 11:并发设计模式

【Java并发编程实战 Day 11】并发设计模式 开篇 这是"Java并发编程实战"系列的第11天&#xff0c;今天我们聚焦于并发设计模式。并发设计模式是解决多线程环境下常见问题的经典解决方案&#xff0c;它们不仅提供了优雅的设计思路&#xff0c;还能显著提升系统的性能…...

用js实现常见排序算法

以下是几种常见排序算法的 JS实现&#xff0c;包括选择排序、冒泡排序、插入排序、快速排序和归并排序&#xff0c;以及每种算法的特点和复杂度分析 1. 选择排序&#xff08;Selection Sort&#xff09; 核心思想&#xff1a;每次从未排序部分选择最小元素&#xff0c;与未排…...