回归和分类区别
回归任务(Regression):
特点:
- 输出是连续值,通常是实数。
- 任务目标是预测或估计一个数值。
- 典型应用包括房价预测、销售额预测、温度预测等。
目标:
- 最小化预测值与真实值之间的差异,通常使用平方损失(均方误差 MSE)。
- 模型输出的是一个实数,不需要进行类别之间的区分。
分类任务(Classification):
特点:
- 输出是离散值,通常是类别标签。
- 任务目标是将输入分为不同的类别。
- 典型应用包括图像分类、垃圾邮件检测、手写数字识别等。
目标:
- 最小化模型对于真实标签的分类误差,通常使用交叉熵损失(Cross-Entropy Loss)。
- 模型输出的是每个类别的概率分布,需要进行类别之间的明确区分。
通用注意事项:
-
输出层的选择: 回归任务的输出层通常只有一个神经元,而分类任务的输出层通常有多个神经元,其中每个神经元对应一个类别。
-
激活函数的选择: 回归任务的输出层通常不使用激活函数,而分类任务的输出层通常使用 softmax 激活函数,将输出转化为类别概率分布。
-
损失函数的选择: 回归任务通常使用平方损失或绝对值损失,而分类任务通常使用交叉熵损失。
-
评估指标的选择: 回归任务通常使用诸如均方根误差(RMSE)等指标,而分类任务通常使用准确率、精确度、召回率等指标。
-
数据标签的表示: 回归任务的标签是实数,而分类任务的标签通常是整数表示的类别。
总的来说,理解任务的本质、选择适当的输出层、激活函数、损失函数和评估指标是设计和训练深度学习模型时的关键步骤。
相关文章:
回归和分类区别
回归任务(Regression): 特点: 输出是连续值,通常是实数。任务目标是预测或估计一个数值。典型应用包括房价预测、销售额预测、温度预测等。 目标: 最小化预测值与真实值之间的差异,通常使用…...
docker nginx滚动日志配置
将所有日志打印到控制台 nginx.conf user nginx; worker_processes auto; # 日志打印控制台 error_log /dev/stdout; #error_log /var/log/nginx/error.log notice; pid /var/run/nginx.pid;events {worker_connections 1024; }http {include /etc/nginx/m…...

大数据分析案例-基于LinearRegression回归算法构建房屋价格预测模型
🤵♂️ 个人主页:艾派森的个人主页 ✍🏻作者简介:Python学习者 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬点赞Ǵ…...
React-hook-form-mui(一):基本使用
前言 在项目开发中,我们选择了ReactMUI作为技术栈。在使用MUI构建form表单时,我们发现并没有与antd类似的表单验证功能,于是我们选择了MUI推荐使用的react-hook-form-mui库去进行验证。但是发现网上关于这个库的使用方法和demo比较少且比较简…...

python总结-生成器与迭代器
生成器与迭代器 生成器生成器定义为什么要有生成器创建生成器的方式一(生成器表达式) 创建生成器的方式二(生成器函数)生成器函数的工作原理总结 迭代器概念可迭代对象和迭代器区别for循环的本质创建一个迭代器 动态添加属性和方法运行过程中给对象、类添加属性和方法types.Met…...
MySQL如何从数据中截取所需要的字符串
MySQL如何从数据中截取所需要的字符串 背景 有这样的一个场景,我想从我的表里面进行数据截取,我的数据内容大致如下: 张三-建外SOHO-2-16 POA 20210518.pdf 我想获取数据中的:20210518这一日期部分,需要如何实现? 解…...
动态加载和动态链接的区别
动态加载(Dynamic Loading)和动态链接(Dynamic Linking)是两个与程序运行时加载和使用代码相关的概念,它们有一些区别: 动态加载(Dynamic Loading): 定义: 动…...

js数组循环,当前循环完成后执行下次循环
前言 上图中,点击播放icon,图中左边地球视角会按照视角列表依次执行。u3D提供了api,但是我们如何保证在循环中依次执行。即第一次执行完成后,再走第二次循环。很多人的第一思路就是promise。对,不错,出发的思路是正确的…...
决策树(Decision Trees)
决策树(Decision Trees)是一种基于树形结构进行决策的模型,广泛应用于分类和回归任务。它通过对数据集进行递归划分,构建一棵树,每个节点代表一个特征,每个分支代表一个决策规则,叶节点存储一个…...

湖南大学-计算机网路-2023期末考试【部分原题回忆】
前言 计算机网络第一门考,而且没考好,回忆起来的原题不多。 这门学科学的最认真,复习的最久,考的最差。 教材使用这本书: 简答题(6*530分) MTU和MSS分别是什么,联系是什么&#x…...

LCD—液晶显示
本节主要介绍以下内容 显示器简介 液晶控制原理 秉火3.2寸液晶屏简介 使用FSMC模拟8080时序 NOR FLASH时序结构体 FSMC初始化结构体 一、显示器简介 显示器属于计算机的I/O设备,即输入输出设备。它是一种将特定电子信息输出到屏幕上再反射到人眼的显示工具。…...
论正确初始化深度学习模型参数的重要性
遇到的问题:在一般的深度学习训练过程中,我们建立好模型以后,程序就有自动的初始化一些模型的参数,比如全连接层中每一个节点的权重等等,在之前的网络训练过程中,我总是事先设下随机种子以后,让…...

ALSA学习(5)——ASoC架构中的Machine
参考博客:https://blog.csdn.net/DroidPhone/article/details/7231605 (以下内容皆为原博客转载) 文章目录 一、注册Platform Device二、注册Platform Driver三、初始化入口soc_probe() 一、注册Platform Device ASoC把声卡注册为Platform …...
LeetCode 0447.回旋镖的数量:哈希表
【LetMeFly】447.回旋镖的数量:哈希表 力扣题目链接:https://leetcode.cn/problems/number-of-boomerangs/ 给定平面上 n 对 互不相同 的点 points ,其中 points[i] [xi, yi] 。回旋镖 是由点 (i, j, k) 表示的元组 ,其中 i 和…...
容器相关笔记
目录 1.容器 1.什么是容器 2.java中的容器 3.容器里存放的是引用数据类型(存对象的地址,不是对象本身),不能存基本数据类型 4.容器存放的两种格式 5.容器类所在的包 6.容器的分类 1.Collection,存放单一的类型 1.List&…...

cissp 第10章 : 物理安全要求
10.1 站点与设施设计的安全原则 物理控制是安全防护的第一条防线,而人员是最后一道防线。 10.1.1 安全设施计划 安全设施计划描述了组织的安全要求的轮廓, 并且着重强调为了提供安全性所用的方法和机制。 这样的计划通过被称为关键路径分析的过程进行开…...

聊一聊 .NET高级调试 内核模式堆泄露
一:背景 1. 讲故事 前几天有位朋友找到我,说他的机器内存在不断的上涨,但在任务管理器中查不出是哪个进程吃的内存,特别奇怪,截图如下: 在我的分析旅程中都是用户态模式的内存泄漏,像上图中的…...

海外代理IP在游戏中有什么作用?
随着科技的飞速发展,手机和电脑等电子产品已成为互联网连接万物的重要工具,深度融入我们的日常生活,我们借助互联网完成工作、休闲和购物等任务,以求提升生活质量。 不仅如此,网络游戏也是人们心中最爱,它…...

高防ip适合防御网站和游戏类的攻击吗?
作为站长,要学会并承受得住网站外来攻击的压力,尤其是所属为 DDoS 攻击高发行业的网站类业务及游戏行业,是很容易被竞争对手或者一些伪黑客爱好者盯上的。 加上,有些站长并没有提前了解,就盲目进军了这两个行业&…...

HTML5和JS实现明媚月色效果
HTML5和JS实现明媚月色效果 先给出效果图: 源码如下: <!DOCTYPE html> <html> <head><title>明媚月光效果</title><style>body {margin: 0;overflow: hidden;background-color: #000; /* 添加一个深色背景以便看到…...
React Native 开发环境搭建(全平台详解)
React Native 开发环境搭建(全平台详解) 在开始使用 React Native 开发移动应用之前,正确设置开发环境是至关重要的一步。本文将为你提供一份全面的指南,涵盖 macOS 和 Windows 平台的配置步骤,如何在 Android 和 iOS…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)
0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...
2024年赣州旅游投资集团社会招聘笔试真
2024年赣州旅游投资集团社会招聘笔试真 题 ( 满 分 1 0 0 分 时 间 1 2 0 分 钟 ) 一、单选题(每题只有一个正确答案,答错、不答或多答均不得分) 1.纪要的特点不包括()。 A.概括重点 B.指导传达 C. 客观纪实 D.有言必录 【答案】: D 2.1864年,()预言了电磁波的存在,并指出…...
【Web 进阶篇】优雅的接口设计:统一响应、全局异常处理与参数校验
系列回顾: 在上一篇中,我们成功地为应用集成了数据库,并使用 Spring Data JPA 实现了基本的 CRUD API。我们的应用现在能“记忆”数据了!但是,如果你仔细审视那些 API,会发现它们还很“粗糙”:有…...
工业自动化时代的精准装配革新:迁移科技3D视觉系统如何重塑机器人定位装配
AI3D视觉的工业赋能者 迁移科技成立于2017年,作为行业领先的3D工业相机及视觉系统供应商,累计完成数亿元融资。其核心技术覆盖硬件设计、算法优化及软件集成,通过稳定、易用、高回报的AI3D视觉系统,为汽车、新能源、金属制造等行…...

(转)什么是DockerCompose?它有什么作用?
一、什么是DockerCompose? DockerCompose可以基于Compose文件帮我们快速的部署分布式应用,而无需手动一个个创建和运行容器。 Compose文件是一个文本文件,通过指令定义集群中的每个容器如何运行。 DockerCompose就是把DockerFile转换成指令去运行。 …...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心
当仓库学会“思考”,物流的终极形态正在诞生 想象这样的场景: 凌晨3点,某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径;AI视觉系统在0.1秒内扫描包裹信息;数字孪生平台正模拟次日峰值流量压力…...

ArcGIS Pro制作水平横向图例+多级标注
今天介绍下载ArcGIS Pro中如何设置水平横向图例。 之前我们介绍了ArcGIS的横向图例制作:ArcGIS横向、多列图例、顺序重排、符号居中、批量更改图例符号等等(ArcGIS出图图例8大技巧),那这次我们看看ArcGIS Pro如何更加快捷的操作。…...
智能AI电话机器人系统的识别能力现状与发展水平
一、引言 随着人工智能技术的飞速发展,AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术,在客户服务、营销推广、信息查询等领域发挥着越来越重要…...

免费PDF转图片工具
免费PDF转图片工具 一款简单易用的PDF转图片工具,可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件,也不需要在线上传文件,保护您的隐私。 工具截图 主要特点 🚀 快速转换:本地转换,无需等待上…...