当前位置: 首页 > news >正文

回归和分类区别

回归任务(Regression):

特点:

  • 输出是连续值,通常是实数。
  • 任务目标是预测或估计一个数值。
  • 典型应用包括房价预测、销售额预测、温度预测等。

目标:

  • 最小化预测值与真实值之间的差异,通常使用平方损失(均方误差 MSE)。
  • 模型输出的是一个实数,不需要进行类别之间的区分。

分类任务(Classification):

特点:

  • 输出是离散值,通常是类别标签。
  • 任务目标是将输入分为不同的类别。
  • 典型应用包括图像分类、垃圾邮件检测、手写数字识别等。

目标:

  • 最小化模型对于真实标签的分类误差,通常使用交叉熵损失(Cross-Entropy Loss)。
  • 模型输出的是每个类别的概率分布,需要进行类别之间的明确区分。

通用注意事项:

  1. 输出层的选择: 回归任务的输出层通常只有一个神经元,而分类任务的输出层通常有多个神经元,其中每个神经元对应一个类别。

  2. 激活函数的选择: 回归任务的输出层通常不使用激活函数,而分类任务的输出层通常使用 softmax 激活函数,将输出转化为类别概率分布。

  3. 损失函数的选择: 回归任务通常使用平方损失或绝对值损失,而分类任务通常使用交叉熵损失。

  4. 评估指标的选择: 回归任务通常使用诸如均方根误差(RMSE)等指标,而分类任务通常使用准确率、精确度、召回率等指标。

  5. 数据标签的表示: 回归任务的标签是实数,而分类任务的标签通常是整数表示的类别。

总的来说,理解任务的本质、选择适当的输出层、激活函数、损失函数和评估指标是设计和训练深度学习模型时的关键步骤。

相关文章:

回归和分类区别

回归任务(Regression): 特点: 输出是连续值,通常是实数。任务目标是预测或估计一个数值。典型应用包括房价预测、销售额预测、温度预测等。 目标: 最小化预测值与真实值之间的差异,通常使用…...

docker nginx滚动日志配置

将所有日志打印到控制台 nginx.conf user nginx; worker_processes auto; # 日志打印控制台 error_log /dev/stdout; #error_log /var/log/nginx/error.log notice; pid /var/run/nginx.pid;events {worker_connections 1024; }http {include /etc/nginx/m…...

大数据分析案例-基于LinearRegression回归算法构建房屋价格预测模型

🤵‍♂️ 个人主页:艾派森的个人主页 ✍🏻作者简介:Python学习者 🐋 希望大家多多支持,我们一起进步!😄 如果文章对你有帮助的话, 欢迎评论 💬点赞&#x1f4…...

React-hook-form-mui(一):基本使用

前言 在项目开发中,我们选择了ReactMUI作为技术栈。在使用MUI构建form表单时,我们发现并没有与antd类似的表单验证功能,于是我们选择了MUI推荐使用的react-hook-form-mui库去进行验证。但是发现网上关于这个库的使用方法和demo比较少且比较简…...

python总结-生成器与迭代器

生成器与迭代器 生成器生成器定义为什么要有生成器创建生成器的方式一(生成器表达式) 创建生成器的方式二(生成器函数)生成器函数的工作原理总结 迭代器概念可迭代对象和迭代器区别for循环的本质创建一个迭代器 动态添加属性和方法运行过程中给对象、类添加属性和方法types.Met…...

MySQL如何从数据中截取所需要的字符串

MySQL如何从数据中截取所需要的字符串 背景 有这样的一个场景,我想从我的表里面进行数据截取,我的数据内容大致如下: 张三-建外SOHO-2-16 POA 20210518.pdf 我想获取数据中的:20210518这一日期部分,需要如何实现? 解…...

动态加载和动态链接的区别

动态加载(Dynamic Loading)和动态链接(Dynamic Linking)是两个与程序运行时加载和使用代码相关的概念,它们有一些区别: 动态加载(Dynamic Loading): 定义: 动…...

js数组循环,当前循环完成后执行下次循环

前言 上图中,点击播放icon,图中左边地球视角会按照视角列表依次执行。u3D提供了api,但是我们如何保证在循环中依次执行。即第一次执行完成后,再走第二次循环。很多人的第一思路就是promise。对,不错,出发的思路是正确的…...

决策树(Decision Trees)

决策树(Decision Trees)是一种基于树形结构进行决策的模型,广泛应用于分类和回归任务。它通过对数据集进行递归划分,构建一棵树,每个节点代表一个特征,每个分支代表一个决策规则,叶节点存储一个…...

湖南大学-计算机网路-2023期末考试【部分原题回忆】

前言 计算机网络第一门考,而且没考好,回忆起来的原题不多。 这门学科学的最认真,复习的最久,考的最差。 教材使用这本书: 简答题(6*530分) MTU和MSS分别是什么,联系是什么&#x…...

LCD—液晶显示

本节主要介绍以下内容 显示器简介 液晶控制原理 秉火3.2寸液晶屏简介 使用FSMC模拟8080时序 NOR FLASH时序结构体 FSMC初始化结构体 一、显示器简介 显示器属于计算机的I/O设备,即输入输出设备。它是一种将特定电子信息输出到屏幕上再反射到人眼的显示工具。…...

论正确初始化深度学习模型参数的重要性

遇到的问题:在一般的深度学习训练过程中,我们建立好模型以后,程序就有自动的初始化一些模型的参数,比如全连接层中每一个节点的权重等等,在之前的网络训练过程中,我总是事先设下随机种子以后,让…...

ALSA学习(5)——ASoC架构中的Machine

参考博客:https://blog.csdn.net/DroidPhone/article/details/7231605 (以下内容皆为原博客转载) 文章目录 一、注册Platform Device二、注册Platform Driver三、初始化入口soc_probe() 一、注册Platform Device ASoC把声卡注册为Platform …...

LeetCode 0447.回旋镖的数量:哈希表

【LetMeFly】447.回旋镖的数量:哈希表 力扣题目链接:https://leetcode.cn/problems/number-of-boomerangs/ 给定平面上 n 对 互不相同 的点 points ,其中 points[i] [xi, yi] 。回旋镖 是由点 (i, j, k) 表示的元组 ,其中 i 和…...

容器相关笔记

目录 1.容器 1.什么是容器 2.java中的容器 3.容器里存放的是引用数据类型(存对象的地址,不是对象本身),不能存基本数据类型 4.容器存放的两种格式 5.容器类所在的包 6.容器的分类 1.Collection,存放单一的类型 1.List&…...

cissp 第10章 : 物理安全要求

10.1 站点与设施设计的安全原则 物理控制是安全防护的第一条防线,而人员是最后一道防线。 10.1.1 安全设施计划 安全设施计划描述了组织的安全要求的轮廓, 并且着重强调为了提供安全性所用的方法和机制。 这样的计划通过被称为关键路径分析的过程进行开…...

聊一聊 .NET高级调试 内核模式堆泄露

一:背景 1. 讲故事 前几天有位朋友找到我,说他的机器内存在不断的上涨,但在任务管理器中查不出是哪个进程吃的内存,特别奇怪,截图如下: 在我的分析旅程中都是用户态模式的内存泄漏,像上图中的…...

海外代理IP在游戏中有什么作用?

随着科技的飞速发展,手机和电脑等电子产品已成为互联网连接万物的重要工具,深度融入我们的日常生活,我们借助互联网完成工作、休闲和购物等任务,以求提升生活质量。 不仅如此,网络游戏也是人们心中最爱,它…...

高防ip适合防御网站和游戏类的攻击吗?

​  作为站长,要学会并承受得住网站外来攻击的压力,尤其是所属为 DDoS 攻击高发行业的网站类业务及游戏行业,是很容易被竞争对手或者一些伪黑客爱好者盯上的。 加上,有些站长并没有提前了解,就盲目进军了这两个行业&…...

HTML5和JS实现明媚月色效果

HTML5和JS实现明媚月色效果 先给出效果图&#xff1a; 源码如下&#xff1a; <!DOCTYPE html> <html> <head><title>明媚月光效果</title><style>body {margin: 0;overflow: hidden;background-color: #000; /* 添加一个深色背景以便看到…...

[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?

&#x1f9e0; 智能合约中的数据是如何在区块链中保持一致的&#xff1f; 为什么所有区块链节点都能得出相同结果&#xff1f;合约调用这么复杂&#xff0c;状态真能保持一致吗&#xff1f;本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里&#xf…...

synchronized 学习

学习源&#xff1a; https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖&#xff0c;也要考虑性能问题&#xff08;场景&#xff09; 2.常见面试问题&#xff1a; sync出…...

【WiFi帧结构】

文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成&#xff1a;MAC头部frame bodyFCS&#xff0c;其中MAC是固定格式的&#xff0c;frame body是可变长度。 MAC头部有frame control&#xff0c;duration&#xff0c;address1&#xff0c;address2&#xff0c;addre…...

Objective-C常用命名规范总结

【OC】常用命名规范总结 文章目录 【OC】常用命名规范总结1.类名&#xff08;Class Name)2.协议名&#xff08;Protocol Name)3.方法名&#xff08;Method Name)4.属性名&#xff08;Property Name&#xff09;5.局部变量/实例变量&#xff08;Local / Instance Variables&…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练

前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1)&#xff1a;从基础到实战的深度解析-CSDN博客&#xff0c;但实际面试中&#xff0c;企业更关注候选人对复杂场景的应对能力&#xff08;如多设备并发扫描、低功耗与高发现率的平衡&#xff09;和前沿技术的…...

Python实现prophet 理论及参数优化

文章目录 Prophet理论及模型参数介绍Python代码完整实现prophet 添加外部数据进行模型优化 之前初步学习prophet的时候&#xff0c;写过一篇简单实现&#xff0c;后期随着对该模型的深入研究&#xff0c;本次记录涉及到prophet 的公式以及参数调优&#xff0c;从公式可以更直观…...

Unit 1 深度强化学习简介

Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库&#xff0c;例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体&#xff0c;比如 SnowballFight、Huggy the Do…...

React---day11

14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store&#xff1a; 我们在使用异步的时候理应是要使用中间件的&#xff0c;但是configureStore 已经自动集成了 redux-thunk&#xff0c;注意action里面要返回函数 import { configureS…...

回溯算法学习

一、电话号码的字母组合 import java.util.ArrayList; import java.util.List;import javax.management.loading.PrivateClassLoader;public class letterCombinations {private static final String[] KEYPAD {"", //0"", //1"abc", //2"…...

音视频——I2S 协议详解

I2S 协议详解 I2S (Inter-IC Sound) 协议是一种串行总线协议&#xff0c;专门用于在数字音频设备之间传输数字音频数据。它由飞利浦&#xff08;Philips&#xff09;公司开发&#xff0c;以其简单、高效和广泛的兼容性而闻名。 1. 信号线 I2S 协议通常使用三根或四根信号线&a…...