Elasticsearch:结合 ELSER 和 BM25 文本查询的相关搜索
Elastic Learned Spare EncodeR (ELSER) 允许你执行语义搜索以获得更相关的搜索结果。 然而,有时,将语义搜索结果与常规关键字搜索结果相结合以获得最佳结果会更有用。 问题是,如何结合文本和语义搜索结果?
首先,让我们看一下对某些字段使用 multi_match 的花园品种文本查询。 这种搜索具有关键字搜索的典型陷阱,即关键字必须以某种形式存在于要返回的文档中,并且我们没有考虑用户搜索内容的上下文。
POST search-national-parks/_search
{"query": {"multi_match": {"query": "Where can I see the Northern Lights?","fields": ["title", "description"]}},"_source": ["title"]
}
现在,让我们看看 ELSER 查询本身:
POST search-national-parks/_search
{"query": {"bool": {"should": [{"text_expansion": {"ml.inference.title_expanded.predicted_value": {"model_id": ".elser_model_2","model_text": "Where can I see the Northern Lights?"}}},{"text_expansion": {"ml.inference.description_expanded.predicted_value": {"model_id": ".elser_model_2","model_text": "Where can I see the Northern Lights?"}}}]}},"_source": ["title"]
}
在上面,我们使用 ELSER 来对文章进行语义搜索。如果你对 ELSER 还不是很熟的话,请参阅如下的文章:
-
Elasticsearch:部署 ELSER - Elastic Learned Sparse EncoderR
-
Elasticsearch:使用 ELSER v2 文本扩展进行语义搜索
组合这两个查询的第一种方法是使用称为线性提升的策略。 在此示例中,我们正在提升文本搜索结果,以便它们具有优先级。 根据你正在运行的查询,这可能是理想的,也可能不是理想的。
POST search-national-parks/_search
{"query": {"bool": {"should": [{"text_expansion": {"ml.inference.title_expanded.predicted_value": {"model_id": ".elser_model_2","model_text": "Where can I see the Northern Lights?","boost": 1}}},{"text_expansion": {"ml.inference.description_expanded.predicted_value": {"model_id": ".elser_model_2","model_text": "Where can I see the Northern Lights?","boost": 1}}},{"multi_match": {"query": "Where can I see the Northern Lights?","fields": ["title","description"],"boost": 4}}]}},"_source": ["title"]
}
最后,我们还可以使用倒数排名融合(RRF)将文本搜索结果与语义结果结合起来,并对返回的搜索结果重新评分:
POST search-national-parks/_search
{"sub_searches": [{"query": {"multi_match": {"query": "Where can I see the Northern Lights?","fields": ["title","description"]}}},{"query": {"text_expansion": {"ml.inference.title_expanded.predicted_value": {"model_id": ".elser_model_2","model_text": "Where can I see the Northern Lights?"}}}},{"query": {"text_expansion": {"ml.inference.description_expanded.predicted_value": {"model_id": ".elser_model_2","model_text": "Where can I see the Northern Lights?"}}}}],"rank": {"rrf": {"window_size": 10,"rank_constant": 20}},"_source": ["title", "states"]
}
这些示例应该可以帮助你开始为你的用例创建最相关的搜索结果的旅程!
相关文章:

Elasticsearch:结合 ELSER 和 BM25 文本查询的相关搜索
Elastic Learned Spare EncodeR (ELSER) 允许你执行语义搜索以获得更相关的搜索结果。 然而,有时,将语义搜索结果与常规关键字搜索结果相结合以获得最佳结果会更有用。 问题是,如何结合文本和语义搜索结果? 首先,让我…...

海外社媒运营为什么需要选择优质IP代理?
跨境电商卖家尤其需要关注海外社媒运营,想要更好地运营Instagram、Facebook、TikTok 或 Twitter等,挖掘社媒潜力需要采取战略方法,而社交媒体IP代理在这一活动中发挥着至关重要的作用,下面为你详细介绍。 一、社交媒体代理IP及其运…...
Java中的性能优化:深入剖析常见优化技巧
引言 在现代软件开发中,性能优化是一个至关重要的话题。Java作为一门强大而广泛使用的编程语言,也需要开发者关注和优化性能,以确保应用程序能够在各种场景下高效运行。本文将深入剖析Java中的一些常见性能优化技巧,为开发者提供…...
k8s的yaml文件中的kind类型都有哪些?(详述版Part2/2)
目录 综述 分块详述 13、ConfigMap 14、Secret 15、Ingress 16、StorageClass 17、Namespace 18、ServiceMonitor 19、HorizontalPodAutoscaler 20、NetworkPolicy 21、CustomResourceDefinition 22、Role 23、ClusterRole 24、ClusterRoleBinding 25、RoleBindi…...

什么是API网关代理?
带有API网关的代理服务显着增强了用户体验和性能。特别是对于那些使用需要频繁创建和轮换代理的工具的人来说,使用 API 可以节省大量时间并提高效率。 了解API API(即应用程序编程接口)充当服务提供商和用户之间的连接网关。通过 API 连接&a…...
AWS Simple Email Service (SES) 实战指南
Amazon Simple Email Service (SES) 是一项强大的电子邮件发送服务,适用于数字营销、应用程序通知以及事务性邮件。在这个实战指南中,我们将演示如何设置 AWS SES 并通过几个示例展示其用法。 设置 AWS SES 1. 创建 AWS 账户 首先,您需要创…...

详解Oracle数据库的启动
Oracle数据库的启动,其概念可参考Overview of Instance and Database Startup。 其过程可参见下图: 当数据库从关闭状态进入打开数据库状态时,它会经历以下阶段。 阶段Mount状态描述1实例在没有挂载数据库的情况下启动实例已启动ÿ…...

2024年跨境电商上半年营销日历,建议收藏
2024年伊始,跨境电商开启新一轮的营销竞技,那么首先需要客户需求,节假日与用户需求息息相关,那么接下来小编为大家整理2024上半年海外都有哪些节日和假期?跨境卖家如何见针对营销日历选品,助力卖家把握2024…...

Go采集1688网站数据对比商品价格
最近看了下多多和1688的一些商品价格,发现好多店铺都是无货源拿货一件发货,这就导致层层叠加价格翻了不知道几倍,真所谓多花钱办的事还是一样,因此,今天我就通过一个爬虫程序监控对应商品价格,了解行业龙头…...

Java泛型:灵活多变的类型参数化工具
👑专栏内容:Java⛪个人主页:子夜的星的主页💕座右铭:前路未远,步履不停 目录 一、泛型1、什么是泛型2、泛型的语法 二、泛型类的使用1、泛型类的语法2、泛型如何编译的2.1、擦除机制2.2、为什么不能实例化泛…...

java 体育明星管理系统Myeclipse开发mysql数据库web结构java编程计算机网页项目
一、源码特点 java Web 体育明星管理系统是一套完善的java web信息管理系统,对理解JSP java编程开发语言有帮助,系统具有完整的源代码和数据库,系统主要采用B/S模式开发。开发环境为 TOMCAT7.0,Myeclipse8.5开发,数据库为Mysq…...

蓝凌EIS智慧协同平台 ShowUserInfo.aspx sql注入漏洞
漏洞描述: 蓝凌EIS智慧协同平台是一个简单、高效的工作方式专为成长型企业打造的沟通、协同、社交的移动办公平台,覆盖OA、沟通、客户、人事、知识等管理需求,集合了非常丰富的模块,满足组织企业在知识、项目管理系统建设等需求的…...
React Hooks的useState、useRef使用
React Hooks 是 React 16.8 版本引入的新特性,它允许你在不编写 class 的情况下使用 state 和其他 React 特性。其中,useState 和 useRef 是两个常用的 Hooks。 1. useState useState 是一个允许你在函数组件中添加 state 的 Hook。 使用说明…...

Linux--防火墙,实验案例:基于区域、服务、端口的访问控制
实验环境 某公司的Web服务器,网关服务器均采用Linux CentOS 7.3操作系统,如图2.13所示。为了 加强网络访问的安全性,要求管理员熟悉firewalld防火墙规则的编写,以便制定有效、可行的主机防护策略。 需求描述 > 网关服务器ens3…...

C++学习笔记(二十八):c++ 静态库及动态库的使用
静态库的使用 库的使用会很大程度减少我们的工作,本节对c中静态库和动态库的使用进行简单的介绍。静态链接库意味着这个库会被放到可执行文件中,在生成的exe中。动态链接库是在程序运行时链接的,可以在程序运行时调用加载库函数的方法来实现&…...

uniapp最简单的底部兼容安全区域显示
效果图: 1.html写上动态padding-bottom <view class"button-wrap" :style"padding-bottom:bottomPaddingrpx"><view class"com-btn cencel-btn">取消</view><view class"com-btn confirm-btn " cl…...

图像去噪——CBDNet网络训练自己数据集及推理测试,模型转ONNX模型(详细图文教程)
CBDNet 主要由两个子网络组成:噪声估计子网络和去噪子网络。噪声估计子网络用于估计图像的噪声水平,而去噪子网络用于去除图像中的噪声。 CBDNet 的优势在于: 它采用了更真实的噪声模型,既考虑了泊松-高斯模型,还考虑…...
【Verilog】期末复习——解释下列名词(FPGA、ASIC、IP、RTL、EDA、HDL、FSM)
系列文章 数值(整数,实数,字符串)与数据类型(wire、reg、mem、parameter) 运算符 数据流建模 行为级建模 结构化建模 组合电路的设计和时序电路的设计 有限状态机的定义和分类 期末复习——数字逻辑电路分…...

计算机网络 综合(习题)
【计算机网络习题】系列文章目录 计算机网络 第一章 绪论(习题) 计算机网络 第二章 计算机网络体系结构(习题) 计算机网络 第三章 应用层(习题) 计算机网络 第四章 运输层(习题) 计算机网络 第五章 网络层(习题) 计算机网络 第六章 数据链路层(习题) 计算机网络 第七章 物…...
探索vue2框架的世界:简述常用的vue2选项式API (二)
组件实例 👉 $attrs 用于父组件隔代向孙组件传值 长设置在子组件中 v-bind"$attrs" (Vue2.4) parent.vue (父组件) <template><div class"outer"><h3>父组件</h3>名字:<input v-model"name"…...

从深圳崛起的“机器之眼”:赴港乐动机器人的万亿赛道赶考路
进入2025年以来,尽管围绕人形机器人、具身智能等机器人赛道的质疑声不断,但全球市场热度依然高涨,入局者持续增加。 以国内市场为例,天眼查专业版数据显示,截至5月底,我国现存在业、存续状态的机器人相关企…...

抖音增长新引擎:品融电商,一站式全案代运营领跑者
抖音增长新引擎:品融电商,一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中,品牌如何破浪前行?自建团队成本高、效果难控;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...
多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验
一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...

相机从app启动流程
一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...

MySQL 8.0 OCP 英文题库解析(十三)
Oracle 为庆祝 MySQL 30 周年,截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始,将英文题库免费公布出来,并进行解析,帮助大家在一个月之内轻松通过OCP认证。 本期公布试题111~120 试题1…...

GC1808高性能24位立体声音频ADC芯片解析
1. 芯片概述 GC1808是一款24位立体声音频模数转换器(ADC),支持8kHz~96kHz采样率,集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器,适用于高保真音频采集场景。 2. 核心特性 高精度:24位分辨率,…...

C# 求圆面积的程序(Program to find area of a circle)
给定半径r,求圆的面积。圆的面积应精确到小数点后5位。 例子: 输入:r 5 输出:78.53982 解释:由于面积 PI * r * r 3.14159265358979323846 * 5 * 5 78.53982,因为我们只保留小数点后 5 位数字。 输…...

C/C++ 中附加包含目录、附加库目录与附加依赖项详解
在 C/C 编程的编译和链接过程中,附加包含目录、附加库目录和附加依赖项是三个至关重要的设置,它们相互配合,确保程序能够正确引用外部资源并顺利构建。虽然在学习过程中,这些概念容易让人混淆,但深入理解它们的作用和联…...

论文阅读:LLM4Drive: A Survey of Large Language Models for Autonomous Driving
地址:LLM4Drive: A Survey of Large Language Models for Autonomous Driving 摘要翻译 自动驾驶技术作为推动交通和城市出行变革的催化剂,正从基于规则的系统向数据驱动策略转变。传统的模块化系统受限于级联模块间的累积误差和缺乏灵活性的预设规则。…...
LCTF液晶可调谐滤波器在多光谱相机捕捉无人机目标检测中的作用
中达瑞和自2005年成立以来,一直在光谱成像领域深度钻研和发展,始终致力于研发高性能、高可靠性的光谱成像相机,为科研院校提供更优的产品和服务。在《低空背景下无人机目标的光谱特征研究及目标检测应用》这篇论文中提到中达瑞和 LCTF 作为多…...