Python数据分析:入门到实践
一、引言
(用手机写的,明天重新排版。)
在当今数据驱动的时代,数据分析已经成为各行各业不可或缺的一部分。Python作为一种高效、易学的编程语言,在数据分析领域具有广泛的应用。本文将带你从Python数据分析的入门知识开始,逐步深入到实践应用,帮助你掌握这一强大的技能。
二、Python数据分析基础
Python环境配置
在进行Python数据分析之前,你需要安装Python并配置相应的开发环境。你可以从Python官网下载安装包,并根据自己的操作系统进行安装。在安装过程中,请确保勾选“Add Python to PATH”选项,以便于后续的环境配置。
数据类型与处理
在Python中,NumPy库提供了丰富的数据类型,如数组、矩阵等,用于存储和处理数据。Pandas库则提供了数据帧(DataFrame)和系列(Series)两种数据结构,方便我们进行数据清洗、筛选、排序等操作。
数据导入与导出
在进行数据分析时,我们经常需要从各种数据源中导入数据。Python提供了多种方式来导入数据,如从CSV文件、Excel文件、数据库等导入。导出数据时,我们可以使用Pandas的to_csv()和to_excel()等方法将数据帧导出为文件。
三、Python数据分析进阶
数据清洗与预处理
在导入数据后,我们通常需要进行数据清洗和预处理工作,如缺失值处理、异常值检测、数据类型转换等。Pandas库提供了丰富的函数和方法来帮助我们完成这些任务。
数据探索与可视化
通过数据探索和可视化,我们可以更好地理解数据的分布和特征。Python提供了Matplotlib、Seaborn等可视化库,可以帮助我们绘制各种图表,如折线图、柱状图、散点图等。
案例一:社交媒体用户行为分析
任务:分析社交媒体平台上用户的关注、点赞和评论行为,了解用户兴趣和偏好。
步骤:
数据收集:使用爬虫技术从社交媒体平台上抓取用户数据。
数据清洗:处理异常值、缺失值和重复数据。
特征提取:提取用户关注关系、点赞数、评论数等特征。
数据分析:使用Pandas和NumPy进行统计分析,如描述性统计、相关性分析等。
可视化:使用Matplotlib和Seaborn绘制用户行为分布图、关系网络图等。
案例二:电商销售数据分析
任务:分析电商平台的销售数据,了解商品销售情况、客户购买行为等。
步骤:
数据收集:从电商平台获取商品销售数据、客户信息等。
数据清洗:处理异常值、缺失值和重复数据。
特征提取:提取商品类别、价格、销量、客户购买频次等特征。
数据分析:使用Pandas和NumPy进行统计分析,如描述性统计、关联规则挖掘等。
可视化:使用Matplotlib和Seaborn绘制销售趋势图、客户画像图等。
案例三:金融市场数据分析
任务:分析股票市场数据,预测股票价格走势。
步骤:
数据收集:从股票交易平台获取历史股票价格数据。
数据清洗:处理异常值、缺失值和重复数据。
特征提取:提取股票代码、价格、成交量等特征。
数据分析:使用Pandas和NumPy进行统计分析,如时间序列分析、相关性分析等。import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import LabelEncoder
from sklearn.cluster import KMeans
# 1. 数据收集和清洗
# 这里假设数据已经以CSV格式存储在"sales_data.csv"文件中
data = pd.read_csv("sales_data.csv")
data = data.dropna() # 删除含有缺失值的行
# 2. 特征提取 - 提取商品类别、价格、销量等特征,并对类别进行编码处理
features = ["product_category", "price", "sales"]
data["product_category"] = LabelEncoder().fit_transform(data["product_category"]) # 对商品类别进行编码处理
feature_data = data[features]
# 3. 数据分析 - 使用描述性统计和关联规则挖掘等
# 计算每个特征的平均值、中位数、标准差等,并进行关联规则挖掘,找出销量与商品类别、价格之间的关联关系。
统计分析 = feature_data.describe()
print(统计分析)
# 可视化 - 绘制销售趋势图和客户画像图等。可以使用KMeans聚类算法对客户进行分类,并绘制不同类型的客户购买行为图。由于篇幅限制,这里省略了具体实现。
相关文章:
Python数据分析:入门到实践
一、引言 (用手机写的,明天重新排版。) 在当今数据驱动的时代,数据分析已经成为各行各业不可或缺的一部分。Python作为一种高效、易学的编程语言,在数据分析领域具有广泛的应用。本文将带你从Python数据分析的入门知…...
第7章-第9节-Java中的Stream流(链式调用)
1、什么是Stream流 Lambda表达式,基于Lambda所带来的函数式编程,又引入了一个全新的Stream概念,用于解决集合类库既有的鼻端。 2、案例 假设现在有一个需求, 将list集合中姓张的元素过滤到一个新的集合中;然后将过滤…...
创建一个矩形中有两个三角形
#include <glad/glad.h> #include <GLFW/glfw3.h>#include <iostream>float vertices[] {// 第一个三角形0.5f, 0.5f, 0.0f, // 右上0.5f, -0.5f, 0.0f, // 右下-0.5f, -0.5f, 0.0f, // 左下-0.5f, 0.5f, 0.0f, // 左上 };unsigned i…...
Open3D 基于kdtree树的邻近点搜索(10)
Open3D 基于kdtree树的邻近点搜索(10) 一、算法简介二、算法实现1.K邻近点搜索2.R邻域点搜索三、结果释义一、算法简介 KD 树(k-dimensional tree)是一种用于组织 k 维空间中点的数据结构,旨在提供高效的 k 最近邻搜索和范围搜索(如半径邻域搜索)。KD 树通过递归地将空间…...
c++实现支持动态扩容的栈(stack)
1.在栈容量满时自动扩容: 支持自动扩容栈实现: // // myStack.hpp // algo_demo // // Created by Hacker X on 2024/1/9. //#ifndef myStack_hpp #define myStack_hpp #include <stdio.h> #include <string.h> //栈实现 //1.入栈 //2.出栈 //3.空栈 //4.满栈 …...
举例说明计算机视觉(CV)技术的优势和挑战。
计算机视觉(Computer Vision,CV)技术是指使计算机能够理解和解释视觉数据的能力。CV技术在很多领域都有广泛的应用,包括图像处理、目标检测、人脸识别、自动驾驶等。以下是CV技术的一些优势和挑战的例子: 优势&#x…...
如何利用docker来部署war包项目
首先编写dockerfile文件: # 使用官方的Tomcat镜像作为基础镜像 FROM tomcat:9.0# 将war包复制到容器的webapps目录下 COPY xxxx.war /usr/local/tomcat/webapps/# 暴露Tomcat的默认端口 EXPOSE 8080 编写docker-compose.yml文件: version: 3 services…...
SpringBoot 如何增强PageHelper入参的健壮性
PageHelper.startPage(int pageNum, int pageSize, boolean count) 参数为外部输入,故存在异常输入场景。比如 pageNum 和 pageSize 输入的值 负数 或者 0,所以引入PageUtils来对入参进行判断矫正,从而避免引入异常。 第1步:支持…...
书生·浦语大模型全链路开源体系 学习笔记 第三课
huggingface-cli: command not found 按照该文档解决即可 https://github.com/huggingface/huggingface_hub/issues/1079 具体如下: 1、确保环境已将安装huggingface-cli 2、版本需要旧版,pip install huggingface_hub0.20.1 3、再按如下执行 # T…...
CodeGPT,你的智能编码助手—CSDN出品
CodeGPT是由CSDN打造的一款生成式AI产品,专为开发者量身定制。 无论是在学习新技术还是在实际工作中遇到的各类计算机和开发难题,CodeGPT都能提供强大的支持。其涵盖的功能包括代码优化、续写、解释、提问等,还能生成精准的注释和创作相关内…...
VMware Workstation——修改虚拟机配置和设置网络
目录 一、修改配置 1、点击需要修改配置的虚拟机,然后点击编辑虚拟机配置 2、修改内存、CPU、硬盘配置 二、设置网络 1、从虚拟机配置中进入到网络适配器设置 2、选择网络连接模式 一、修改配置 1、点击需要修改配置的虚拟机,然后点击编辑虚拟机配…...
计算机毕业设计 基于SpringBoot的项目申报系统的设计与实现 Java实战项目 附源码+文档+视频讲解
博主介绍:✌从事软件开发10年之余,专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ 🍅文末获取源码联系🍅 👇🏻 精…...
CentOS 7.8 安装 Docker
1.卸载旧版本 sudo yum remove docker \ docker-client \ docker-client-latest \ docker-common \ docker-latest \ docker-latest-logrotate \ docker-logrotate \ docker-engine2.安装依赖 sudo yum -y install gcc sudo yum -y install gcc-c3.安装软件包 sudo yum inst…...
Flask 会员列表展示
感谢编程浪子师傅的源码信息分享 web/controllers/member/Member.py # -*- coding: utf-8 -*- from flask import Blueprint,request,redirect,jsonify from common.libs.Helper import ops_render,iPagination,getCurrentDate,getDictFilterField,selectFilterObj from comm…...
光纤知识总结
1光纤概念: 光导纤维(英语:Optical fiber),简称光纤,是一种由玻璃或塑料制成的纤维,利用光在这些纤维中以全内反射原理传输的光传导工具。 微细的光纤封装在塑料护套中,使得它能够…...
LeetCode简单题记录
1、两数之和,给定数组nums,求和为target的两个数组元素的下标 我用了两个for循环,官方解为 哈希表,知识盲区 class Solution { public:vector<int> twoSum(vector<int>& nums, int target) {unordered_map<i…...
【Python学习】Python学习10-列表
目录 【Python学习】Python学习10-列表 前言创建语法访问列表中的值更新和删除列表元素操作列表列表截取Python列表函数&方法参考 文章所属专区 Python学习 前言 本章节主要说明Python的列表List。 创建语法 创建一个列表 通过方括号和逗号分割创建,列表数据…...
MySQL四大引擎,数据库管理,数据表管理,数据库账号管理
MySQL四大引擎 InnoDB InnoDB引擎是MySQL默认的存储引擎。它支持事务和行级锁定,并具有高并发性和数据完整性保护的特性。InnoDB适用于具有复杂查询和高并发读写操作的应用程序。MyISAM InnoDB引擎特点和优势 事务支持:InnoDB支持ACID(原子…...
CentOS找回root密码
很悲伤,你忘记了root密码。。。 那就来重置它吧~ 1、在启动时选择操作系统:在引导过程中,选择CentOS操作系统并按下键盘上的任意键来停止引导。 2、 进入编辑模式:在启动菜单中,找到并选择要编辑的CentOS条目&…...
react输入框检索树形(tree)结构
input搜索框搜索树形子级内容1. input框输入搜索内容2. 获取tree结构数据3. 与tree匹配输入的内容,tree是多维数组,一级一级的对比输入的内容是否匹配,用forEach循环遍历数据,匹配不到在往下找,直到找到为null &#x…...
浅谈 React Hooks
React Hooks 是 React 16.8 引入的一组 API,用于在函数组件中使用 state 和其他 React 特性(例如生命周期方法、context 等)。Hooks 通过简洁的函数接口,解决了状态与 UI 的高度解耦,通过函数式编程范式实现更灵活 Rea…...
TDengine 快速体验(Docker 镜像方式)
简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...
从零实现富文本编辑器#5-编辑器选区模型的状态结构表达
先前我们总结了浏览器选区模型的交互策略,并且实现了基本的选区操作,还调研了自绘选区的实现。那么相对的,我们还需要设计编辑器的选区表达,也可以称为模型选区。编辑器中应用变更时的操作范围,就是以模型选区为基准来…...
Python:操作 Excel 折叠
💖亲爱的技术爱好者们,热烈欢迎来到 Kant2048 的博客!我是 Thomas Kant,很开心能在CSDN上与你们相遇~💖 本博客的精华专栏: 【自动化测试】 【测试经验】 【人工智能】 【Python】 Python 操作 Excel 系列 读取单元格数据按行写入设置行高和列宽自动调整行高和列宽水平…...
【Linux】C语言执行shell指令
在C语言中执行Shell指令 在C语言中,有几种方法可以执行Shell指令: 1. 使用system()函数 这是最简单的方法,包含在stdlib.h头文件中: #include <stdlib.h>int main() {system("ls -l"); // 执行ls -l命令retu…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)
宇树机器人多姿态起立控制强化学习框架论文解析 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一) 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...
NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...
ios苹果系统,js 滑动屏幕、锚定无效
现象:window.addEventListener监听touch无效,划不动屏幕,但是代码逻辑都有执行到。 scrollIntoView也无效。 原因:这是因为 iOS 的触摸事件处理机制和 touch-action: none 的设置有关。ios有太多得交互动作,从而会影响…...
Java编程之桥接模式
定义 桥接模式(Bridge Pattern)属于结构型设计模式,它的核心意图是将抽象部分与实现部分分离,使它们可以独立地变化。这种模式通过组合关系来替代继承关系,从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...
Chromium 136 编译指南 Windows篇:depot_tools 配置与源码获取(二)
引言 工欲善其事,必先利其器。在完成了 Visual Studio 2022 和 Windows SDK 的安装后,我们即将接触到 Chromium 开发生态中最核心的工具——depot_tools。这个由 Google 精心打造的工具集,就像是连接开发者与 Chromium 庞大代码库的智能桥梁…...
