python爬虫实战(6)--获取某度热榜
1. 项目描述
需要用到的类库
pip install requests
pip install beautifulsoup4
pip install pandas
pip install openpyxl
然后,我们来编写python脚本,并引入需要的库:
import requests
from bs4 import BeautifulSoup
import pandas as pd
第一部分:网络爬虫
定义一个函数来抓取百度热榜的数据,方式同样是发出GET请求,并使用BeautifulSoup解析请求内容,最后提取热榜标题:
def get_hot_list():response = requests.get("https://top.baidu.com/board?tab=realtime")soup = BeautifulSoup(response.content, 'html.parser')hot_list = []for idx, item in enumerate(soup.find_all('div', class_='c-single-text-ellipsis')):if idx % 2 != 0:hot_list.append(item.text)return hot_list
以上这个函数用requests库发出GET请求,然后用BeautifulSoup解析请求内容,然后提取出所有的热榜标题。
第二部分:数据输出
编写第二个函数来生成Excel文件:
def write_to_excel(hot_list, filename='baidu_hot.xlsx'):df = pd.DataFrame(hot_list, columns=['热榜标题'])df.to_excel(filename, index=False)
在这个函数里,我们首先将数据转化为pandas的DataFrame对象,然后调用to_excel方法将其保存为Excel文件。
现在,你可以像这样运行脚本以获取百度热榜并生成Excel文件:
hot_list = get_hot_list()
write_to_excel(hot_list)
相关文章:
python爬虫实战(6)--获取某度热榜
1. 项目描述 需要用到的类库 pip install requests pip install beautifulsoup4 pip install pandas pip install openpyxl然后,我们来编写python脚本,并引入需要的库: import requests from bs4 import BeautifulSoup import pandas as p…...
十三、K8S之亲和性
亲和性 一、概念 在K8S中,亲和性(Affinity)用来定义Pod与节点关系的概念,亲和性通过指定标签选择器和拓扑域约束来决定 Pod 应该调度到哪些节点上。与污点相反,它主要是尽量往某节点靠。 亲和性是 Kubernetes 中非常…...
对于网关的理解-Gateway
因为在使用微服务的时候,会有多端请求。会产生以下问题: 1.客户端需要记住每一个微服务的url 2.主机端口也会直接暴露 3.每一个微服务都需要认证 4.存在跨域问题 所以网关可以解决统一访问、隐藏真实的服务器地址、网关进行统一认证、解决跨域问题、…...
win10 - Snipaste截图工具的使用
win10 - Snipaste截图工具的使用 Step 1:下载 下载链接 提取码:wuv2 Step 2:直接解压可用 找到解压好的目录,并双击exe文件即可 Step 3:设置开机启动 在电脑右下角找到snipaste图标,右键,找…...
Selenium 学习(0.19)——软件测试之基本路径测试法——拓展案例
1、案例 请使用基本路径法为变量year设计测试用例,year的取值范围是1000<year<2001。代码如下: 2、步骤 先画控制流程图 再转化为控制流图(标出节点) V(G) 总区域数 4 V(G) E - N 2 (边数 - 节点数 2…...
工作记录-------正则表达式---小白也能看懂
什么是正则表达式 正则表达式是一种强大的工具,用于匹配和识别文本模式。 下面是一个基本的介绍: ^ 和 $: 这些是锚定字符,分别匹配字符串的开头和结尾。例如,^Hello匹配以 “Hello” 开头的字符串,end$匹配以 “en…...
C3-1.3.1 无监督学习——异常检测
C3-1.3.1 无监督学习——异常检测 1、举例:异常值检测示例——密度评估法 1.1 举一个例子 这里做的是 查看飞机发动机 异常检测: 左侧:X1 ,X2 … 是 可能会影响发动机状态的特征右侧: Dataset:训练数据集New engine…...
1.4.1机器学习——梯度下降+α学习率大小判定
1.4.1梯度下降 4.1、梯度下降的概念 ※【总结一句话】:系统通过自动的调节参数w和b的值,得到最小的损失函数值J。 如下:是梯度下降的概念图。 我们有一个损失函数 J(w,b),包含两个参数w和b(你可以想象成J(w,b) w*x…...
在IntelliJ IDEA中,.idea文件是什么,可以删除吗
相信有很多小伙伴,在用idea写java代码的时候,创建工程总是会出现.idea文件,该文件也从来没去打开使用过,那么它在我们项目里面,扮演什么角色,到底能不能删除它呢? 1、它是什么?有什么…...
【Spring Cloud】Gateway组件的三种使用方式
🎉🎉欢迎来到我的CSDN主页!🎉🎉 🏅我是Java方文山,一个在CSDN分享笔记的博主。📚📚 🌟推荐给大家我的专栏《Spring Cloud》。🎯🎯 &am…...
对象的复制
方式一:sv 的new函数 trans tr1,tr2; malbox.get(tr2); tr1 new tr2;//仅用于浅拷贝,拷贝后tr1,tr2为两个独立的对象方式二:uvm 域的自动化常用函数:copy / clone / 使用前提: 1. 函数都可用于uvm_object类型&…...
基于 Python+Neo4j+医药数据,构建了一个知识图谱的自动问答系统
知识图谱是目前自然语言处理的一个热门方向。目前知识图谱在各个领域全面开花,如教育、医疗、司法、金融等。 本项目立足医药领域,以垂直型医药网站为数据来源,以疾病为核心,构建起一个包含7类规模为4.4万的知识实体,…...
Maven之属性管理
1.属性管理 1.1 属性配置与使用 ①:定义属性 <!--定义自定义属性--> <properties><spring.version>5.2.10.RELEASE</spring.version> </properties>②:引用属性 <dependency><groupId>org.springframewor…...
快乐学Python,数据分析之获取数据方法「公开数据或爬虫」
学习Python数据分析,第一步是先获取数据,为什么说数据获取是数据分析的第一步呢,显而易见:数据分析,得先有数据,才能分析。 作为个人来说,如何获取用于分析的数据集呢? 1、获取现成…...
前端常用的设计模式
设计模式:是一种抽象的编程思想,并不局限于某一特定的编程语言,而是在许多语言之间是相通的;它是软件设计中常见的问题的通用、可反复使用、多少人知晓的一种解决方案或者模板。一般对与从事过面向对象编程的人来说会更熟悉一些。…...
游戏引擎支持脚本编程有啥好处
很多游戏引擎都支持脚本编程。Unity、Unreal Engine、CryEngine等大型游戏引擎都支持使用脚本编写游戏逻辑和功能。脚本编程通常使用C#、Lua或Python等编程语言,并且可以与游戏引擎的API进行交互来控制游戏对象、设置变量、执行行为等。使用脚本编程,游戏…...
react中概念性总结(二)
目录 说说你对react的理解?有哪些特性? 说说Real diff算法是怎么运作的,从tree层到component层到element层分别讲解? 调和阶段setState干了什么? 说说redux的工作流程? 为什么react元素有一个$$type属…...
WPF自定义漂亮顶部工具栏 WPF自定义精致最大化关闭工具栏 wpf导航栏自定义 WPF快速开发工具栏
在WPF应用程序开发中,自定义一个漂亮的顶部工具栏具有多重关键作用,它不仅增强了用户体验,还提升了整体应用的专业性和易用性。以下是对这一功能的详细介绍: 首先,自定义顶部工具栏是用户界面设计的重要组成部分&…...
Transformer 的双向编码器表示 (BERT)
一、说明 本文介绍语言句法中,最可能的单词填空在self-attention的表现形式,以及内部原理的介绍。 二、关于本文概述 在我之前的博客中,我们研究了关于生成式预训练 Transformer 的完整概述,关于生成式预训练 Transformer (GPT) 的…...
关于LwRB环形缓冲区开源库的纯C++版本支持原子操作
1、LwRB环形缓冲区开源库: GitHub - MaJerle/lwrb: Lightweight generic ring buffer manager libraryLightweight generic ring buffer manager library. Contribute to MaJerle/lwrb development by creating an account on GitHub.https://github.com/MaJerle/l…...
浅谈 React Hooks
React Hooks 是 React 16.8 引入的一组 API,用于在函数组件中使用 state 和其他 React 特性(例如生命周期方法、context 等)。Hooks 通过简洁的函数接口,解决了状态与 UI 的高度解耦,通过函数式编程范式实现更灵活 Rea…...
7.4.分块查找
一.分块查找的算法思想: 1.实例: 以上述图片的顺序表为例, 该顺序表的数据元素从整体来看是乱序的,但如果把这些数据元素分成一块一块的小区间, 第一个区间[0,1]索引上的数据元素都是小于等于10的, 第二…...
自然语言处理——循环神经网络
自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元(GRU)长短期记忆神经网络(LSTM)…...
如何在最短时间内提升打ctf(web)的水平?
刚刚刷完2遍 bugku 的 web 题,前来答题。 每个人对刷题理解是不同,有的人是看了writeup就等于刷了,有的人是收藏了writeup就等于刷了,有的人是跟着writeup做了一遍就等于刷了,还有的人是独立思考做了一遍就等于刷了。…...
Swagger和OpenApi的前世今生
Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章,二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑: 🔄 一、起源与初创期:Swagger的诞生(2010-2014) 核心…...
大数据学习(132)-HIve数据分析
🍋🍋大数据学习🍋🍋 🔥系列专栏: 👑哲学语录: 用力所能及,改变世界。 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言Ǵ…...
均衡后的SNRSINR
本文主要摘自参考文献中的前两篇,相关文献中经常会出现MIMO检测后的SINR不过一直没有找到相关数学推到过程,其中文献[1]中给出了相关原理在此仅做记录。 1. 系统模型 复信道模型 n t n_t nt 根发送天线, n r n_r nr 根接收天线的 MIMO 系…...
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据
微软PowerBI考试 PL300-在 Power BI 中清理、转换和加载数据 Power Query 具有大量专门帮助您清理和准备数据以供分析的功能。 您将了解如何简化复杂模型、更改数据类型、重命名对象和透视数据。 您还将了解如何分析列,以便知晓哪些列包含有价值的数据,…...
排序算法总结(C++)
目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指:同样大小的样本 **(同样大小的数据)**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...
【Linux】Linux 系统默认的目录及作用说明
博主介绍:✌全网粉丝23W,CSDN博客专家、Java领域优质创作者,掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围:SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...
