平面光波导_三层均匀平面光波导_射线分析法
平面光波导_三层均匀平面光波导_射线分析法
三层均匀平面光波导:
- 折射率沿 x x x 方向有变化,沿 y y y、 z z z 方向没有变化
- 三层:芯区( n 1 n_1 n1) > > > 衬底( n 2 n_2 n2) ≥ \geq ≥ 包层( n 3 n_3 n3)
- 包层通常为空气,即 n 3 = 1 n_3=1 n3=1;芯区与衬底折射率之差通常为 1 0 − 3 ∼ 1 0 − 1 10^{-3}\sim 10^{-1} 10−3∼10−1;芯区一般几微米厚
一、三层均匀平面波导的射线分析法

三层均匀平面波导的传输路线(也是叠加模型)如上图所示:
- 它可以看作由斜着向上界面行进的平面波(以 B B ′ BB^\prime BB′ 为等相位面的平面波),与反射2次后再次斜向上运动的平面波(以 C C ′ CC^\prime CC′ 为等相位面的平面波)相互叠加而成
- 入射光满足全反射条件仅仅能使光被约束在波导中,是形成导波的必要条件(还有是否可以传输)
- 因为导波由2个平面波相叠加,所以当两平面波到达同一地点时,只有满足相位相同的条件,才会相干相长,维持光在波导中传播。否则会相互抵消,导致无法传播
传输条件——相干叠加条件的推导:
约束条件: A B − A ′ B ′ AB-A^\prime B^\prime AB−A′B′ 平面波(以 B B ′ BB^\prime BB′ 为等相位面的平面电磁波)向前传播,第一个发生第二次反射的点( C C C 点)其发生全反射相移后仍应与前一入射平面波保持同相。
记全反射在两界面带来的相移分别为: − 2 ϕ 12 -2\phi_{12} −2ϕ12、 − 2 ϕ 13 -2\phi_{13} −2ϕ13
因为 B B ′ BB^\prime BB′、 C C ′ CC^\prime CC′ 是等相位面,需要 A B A ′ B ′ ABA^\prime B^\prime ABA′B′ 平面波与 C D C ′ D ′ CDC^\prime D^\prime CDC′D′ 平面波相干相长,因此计算 B ′ C ′ B^\prime C^\prime B′C′ 和 B C BC BC 分别带来的光程,且两光程差应为 2 π 2\pi 2π 的整数倍
其中入射光的初始状况、三层均匀平面波导的各层折射率、波导芯区厚度是易于获取的参数,各表达式最终应当尽可能使用这三类参数表达
-
B ′ → C ′ B^\prime\to C^\prime B′→C′ 的光程: n 1 B ′ C ′ ‾ = n 1 B C ′ ‾ sin θ = n 1 ( P C ‾ − P Q ‾ ) sin θ = n 1 ( d tan θ − d / tan θ ) sin θ n_1\overline{B^\prime C^\prime}=n_1\overline{BC^\prime}\sin\theta=n_1(\overline{PC}-\overline{PQ})\sin\theta=n_1\left( d\tan\theta-d/\tan\theta \right)\sin\theta n1B′C′=n1BC′sinθ=n1(PC−PQ)sinθ=n1(dtanθ−d/tanθ)sinθ
其总相移为: k 0 n 1 ( d tan θ − d / tan θ ) sin θ k_0n_1\left( d\tan\theta-d/\tan\theta \right)\sin\theta k0n1(dtanθ−d/tanθ)sinθ
-
B → C B\to C B→C 的光程: n 1 B C ‾ = n 1 ⋅ d / cos θ n_1\overline{BC}=n_1\cdot d/\cos\theta n1BC=n1⋅d/cosθ
其在界面 1,2 和界面 1,3 分别发生了一次全反射,带来的相移为 − 2 ϕ 12 − 2 ϕ 13 -2\phi_{12}-2\phi_{13} −2ϕ12−2ϕ13
其总相移为: k 0 n 1 ⋅ d / cos θ − 2 ϕ 12 − 2 ϕ 13 k_0n_1\cdot d/\cos\theta-2\phi_{12}-2\phi_{13} k0n1⋅d/cosθ−2ϕ12−2ϕ13
此时两平面波相干相长即要求:
k 0 n 1 ⋅ d / cos θ − 2 ϕ 12 − 2 ϕ 13 − k 0 n 1 ( d tan θ − d / tan θ ) sin θ = 2 m π m = 0 , 1 , 2 , ⋯ k_0n_1\cdot d/\cos\theta-2\phi_{12}-2\phi_{13}-k_0n_1\left( d\tan\theta-d/\tan\theta \right)\sin\theta=2m\pi\quad m=0,1,2,\cdots k0n1⋅d/cosθ−2ϕ12−2ϕ13−k0n1(dtanθ−d/tanθ)sinθ=2mπm=0,1,2,⋯
此式只与三层平面均匀波导的厚度、折射率,入射光的入射角、波数有关;其分立的解对应导波的不同模式
将上式简记为:
κ d = m π + ϕ 12 + ϕ 13 (模式的本征方程/特征方程) \kappa d=m\pi+\phi_{12}+\phi_{13} \tag{模式的本征方程/特征方程} κd=mπ+ϕ12+ϕ13(模式的本征方程/特征方程)
-
κ = k x = n 1 k 0 cos θ = n 1 2 k 0 2 − β 2 = k 0 n 1 2 − N 2 \kappa=k_x=n_1k_0\cos\theta=\sqrt{n_1^2k_0^2-\beta^2}=k_0\sqrt{n_1^2-N^2} κ=kx=n1k0cosθ=n12k02−β2=k0n12−N2
-
模折射率/有效折射率: N = β / k 0 N=\beta/k_0 N=β/k0
-
β \beta β 为传播常数。通过模式的本征方程/特征方程可以求出不同模式的传播常数
对于 TE、TM,其全反射相移公式为:
r T E = E ⃗ 0 ′ E ⃗ 0 = n 1 cos θ 1 − n 2 2 − n 1 2 s i n 2 θ 1 n 1 cos θ 1 + n 2 2 − n 1 2 s i n 2 θ 1 = e x p [ − j 2 arctan ( n 1 2 sin 2 θ 1 − n 2 2 n 1 cos θ 1 ) ] = e − j 2 ϕ T E r_{TE}=\frac{\vec E_0^\prime}{\vec E_0}=\frac {n_1\cos\theta_1-\sqrt{n_2^2-n_1^2sin^2\theta_1}} {n_1\cos\theta_1+\sqrt{n_2^2-n_1^2sin^2\theta_1}} =exp\left[ {-j2\arctan\left( \frac{\sqrt{n_1^2\sin^2\theta_1-n_2^2}}{n_1\cos\theta_1} \right)} \right] =e^{-j2\phi_{TE}} rTE=E0E0′=n1cosθ1+n22−n12sin2θ1n1cosθ1−n22−n12sin2θ1=exp −j2arctan n1cosθ1n12sin2θ1−n22 =e−j2ϕTE
r T M = H ⃗ 0 ′ H ⃗ 0 = n 2 2 cos θ 1 − n 1 n 2 2 − n 1 2 s i n 2 θ 1 n 2 2 cos θ 1 + n 1 n 2 2 − n 1 2 s i n 2 θ 1 = e x p [ − j 2 arctan ( n 1 2 n 2 2 n 1 2 sin 2 θ 1 − n 2 2 n 1 cos θ 1 ) ] = e − j 2 ϕ T M r_{TM}=\frac{\vec H_0^\prime}{\vec H_0}=\frac {n_2^2\cos\theta_1-n_1\sqrt{n_2^2-n_1^2sin^2\theta_1}} {n_2^2\cos\theta_1+n_1\sqrt{n_2^2-n_1^2sin^2\theta_1}} =exp\left[ {-j2\arctan\left( \frac{n_1^2}{n_2^2}\frac{\sqrt{n_1^2\sin^2\theta_1-n_2^2}}{n_1\cos\theta_1} \right)} \right] =e^{-j2\phi_{TM}} rTM=H0H0′=n22cosθ1+n1n22−n12sin2θ1n22cosθ1−n1n22−n12sin2θ1=exp −j2arctan n22n12n1cosθ1n12sin2θ1−n22 =e−j2ϕTM
可以简记为:
T E m o d e { ϕ 12 = arctan ( P κ ) ϕ 13 = arctan ( q κ ) T M m o d e { ϕ 12 = arctan ( n 1 2 n 2 2 P κ ) ϕ 13 = arctan ( n 1 2 n 3 2 q κ ) TE\ mode \begin{cases} \phi_{12}=\arctan\left( \frac P\kappa \right) \\\\ \phi_{13}=\arctan\left( \frac q\kappa \right) \\ \end{cases} \\\\ TM\ mode \begin{cases} \phi_{12}=\arctan\left( \frac{n_1^2}{n_2^2} \frac P\kappa \right) \\\\ \phi_{13}=\arctan\left( \frac{n_1^2}{n_3^2} \frac q\kappa \right) \\ \end{cases} \\ TE mode⎩ ⎨ ⎧ϕ12=arctan(κP)ϕ13=arctan(κq)TM mode⎩ ⎨ ⎧ϕ12=arctan(n22n12κP)ϕ13=arctan(n32n12κq)
其本征方程为:
T E : κ d = m π + arctan ( P κ ) + arctan ( q κ ) T M : κ d = m π + arctan ( n 1 2 n 2 2 P κ ) + arctan ( n 1 2 n 3 2 q κ ) TE:\kappa d=m\pi+\arctan\left( \frac P\kappa \right)+\arctan\left( \frac q\kappa \right) \\\\ TM:\kappa d=m\pi+\arctan\left( \frac{n_1^2}{n_2^2} \frac P\kappa \right)+\arctan\left( \frac{n_1^2}{n_3^2} \frac q\kappa \right) TE:κd=mπ+arctan(κP)+arctan(κq)TM:κd=mπ+arctan(n22n12κP)+arctan(n32n12κq)
相关文章:
平面光波导_三层均匀平面光波导_射线分析法
平面光波导_三层均匀平面光波导_射线分析法 三层均匀平面光波导: 折射率沿 x x x 方向有变化,沿 y y y、 z z z 方向没有变化三层:芯区( n 1 n_1 n1) > > > 衬底( n 2 n_2 n2) ≥ \geq ≥ 包层( n 3 n_3 n3)包层通常为空…...
IPV6学习记录
IPV6的意义 从广义上来看IPV6协议包含的内容很多: IPV6地址的生成与分配 IPV6的报头的功能内容 IPV4网络兼容IPV6的方案 ICMPv6的功能(融合了arp和IGMP功能) IPV6的路由方式 ipv6的诞生除了由于ipv4的地址枯竭外,很大程度上也是因为ipv4多年的发展产生了很多…...
使用proteus进行主从JK触发器仿真失败原因的分析
在进行JK触发器的原理分析的时候,我首先在proteus根据主从JK触发器的原理进行了实验根据原理图,如下图: 我进行仿真,在仿真的过程中,我向电路图中添加了外部的置0/1端口,由此在proteus中得到下面的电路图 …...
Golang基础入门及Gin入门教程(2024完整版)
Golang是Google公司2009年11月正式对外公开的一门编程语言,它不仅拥有静态编译语言的安全和高性能,而 且又达到了动态语言开发速度和易维护性。有人形容Go语言:Go C Python , 说明Go语言既有C语言程序的运行速度,又能达到Python…...
202312 青少年软件编程(C/C++)等级考试试卷(四级)电子学会真题
2023年12月 青少年软件编程(C/C)等级考试试卷(四级)电子学会真题 1.移动路线 题目描述 桌子上有一个m行n列的方格矩阵,将每个方格用坐标表示,行坐标从下到上依次递增,列坐标从左至右依次递增…...
leetcode-合并两个有序数组
88. 合并两个有序数组 题解: 这是一个经典的双指针问题,我们可以使用两个指针分别指向nums1和nums2的最后一个元素,然后比较两个指针所指向的元素大小,将较大的元素放入nums1的末尾,并将对应的指针向前移动一位。重复…...
网站怎么做google搜索引擎优化?
网站想做google搜索引擎优化,作为大前提,您必须确保网站本身符合google规范,我们不少客户实际上就连这点都无法做到 有不少客户公司自己本身有技术,就自己弄一个网站出来,做网站本身不是难事,但前提是您需要…...
TDengine 签约西电电力
近年来,随着云计算和物联网技术的迅猛发展,传统电力行业正朝着数字化、信息化和智能化的大趋势迈进。在传统业务基础上,电力行业构建了信息网络、通信网络和能源网络,致力于实现发电、输电、变电、配电和用电的实时智能联动。在这…...
赛门铁克OV代码签名证书一年多少钱?
在当前,软件和应用程序的安全性变得尤为重要。为了保护软件的完整性和安全性,越来越多的开发者和厂商开始采用代码签名的方式来确保软件的真实性和完整性。赛门铁克OV代码签名证书成为了其中一个备受信任的选择。那么,赛门铁克OV代码签名证书…...
Dockerfile详解
文章目录 一、Dockerfile介绍二、常用指令三、Dockerfile示例四、最佳实践 一、Dockerfile介绍 Dockerfile是一个包含创建镜像所有命令的文本文件,通过docker build命令可以根据Dockerfile的内容构建镜像。 一般的,Dockerfile分为四部分:基础…...
零基础小白如何自学sql?
学习SQL对于数据分析和处理来说非常重要。SQL是一种强大的工具,可以帮助你与数据库沟通,提取,整理和理解数据。 以下是一些学习SQL的建议: 01 前期:SQL数据库学习 了解SQL的基本概念:首先,你…...
【刷题笔记2】
刷题笔记2 最小公倍数、最大公约数 两个数的最大公约数两数乘积/最小公倍数 #<include> cmath; int a,b; int mgcd(a,b);//求最大公约数复制字符串substr()函数 s.substr(pos, len) :pos的默认值是0,len的默认值是s.size() - pos string a1;in…...
Kafka之集群搭建
1. 为什么要使用kafka集群 单机服务下,Kafka已经具备了非常高的性能。TPS能够达到百万级别。但是,在实际工作中使用时,单机搭建的Kafka会有很大的局限性。 消息太多,需要分开保存。Kafka是面向海量消息设计的,一个T…...
Linux备忘手册
常⽤命令 作⽤ shutdown -h now 即刻关机 shutdown -h 10 10分钟后关机 shutdown -h 11:00 11:00关机 shutdown -h 10 预定时间关机(10分钟后) shutdown -c 取消指定时间关机 shutdown -r now 重启 shutdown -r 10 10分钟之后重启 shutdown -…...
Qt中QGraphicsView总体架构学习
前沿 前段时间学习了下如何在QGraphicsView架构中绘制刻度尺,主要是与OnPainter中进行比较的,那么今天就来详细讲解下我对QGraphicsView框架的认知吧~ 最近一段时间想学习下,如果我有不正确的,欢迎留言探讨哟~ QGraphicsView架…...
STL-list的使用简介
目录 编辑 一、list的底层实现是带头双向循环链表 二、list的使用 1、4种构造函数(与vector类似)编辑 2、迭代器iterator 3、容量(capicity)操作 4、element access 元素获取 5、增删查改 list modifiers 6、list的迭…...
MySQL:索引失效场景总结
1 执行计划查索引 通过执行计划命令可以查看查询语句使用了什么索引。 EXPLAIN SELECT * FROM ods_finebi_area WHERE areaName = 福建 执行查询计划后,key列的值就是被使用的索引的名称,若key列没有值表示查询未使用索引。 2 在什么列上创建索引 (1)列经常被用于where…...
LNMP平台对接redis服务
目录 1、安装 LNMP 各个组件 2、安装 redis 服务 3、安装 redis 扩展 4、修改 php 配置文件 5、测试连接 1、安装 LNMP 各个组件 2、安装 redis 服务 3、安装 redis 扩展 官网:http://redis.io/ 下载包: https://codeload.github.com/phpredis/p…...
5G之味,在烟火长沙
今年夏天,有一部电影叫做《长沙夜生活》。影片讲述了长沙大排档中的一些故事。网红大排档的老板娘、厨师、顾客,他们的邂逅、热爱、留下、离开、和解、团圆,都发生在一段夜色里,发生在充满烟火气的长沙城。 有没有想过这样一个问题…...
【MYSQL】MYSQL 的学习教程(十一)之 MySQL 不同隔离级别,都使用了哪些锁
聊聊不同隔离级别下,都会使用哪些锁? 1. MySQL 锁机制 对于 MySQL 来说,如果只支持串行访问的话,那么其效率会非常低。因此,为了提高数据库的运行效率,MySQL 需要支持并发访问。而在并发访问的情况下&…...
黑马Mybatis
Mybatis 表现层:页面展示 业务层:逻辑处理 持久层:持久数据化保存 在这里插入图片描述 Mybatis快速入门 2.协议名(Protocol Name)3.方法名(Method Name)4.属性名(Property Name)5.局部变量/实例变量(Local / Instance Variables&…...
Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器
第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...
Swagger和OpenApi的前世今生
Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章,二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑: 🔄 一、起源与初创期:Swagger的诞生(2010-2014) 核心…...
Fabric V2.5 通用溯源系统——增加图片上传与下载功能
fabric-trace项目在发布一年后,部署量已突破1000次,为支持更多场景,现新增支持图片信息上链,本文对图片上传、下载功能代码进行梳理,包含智能合约、后端、前端部分。 一、智能合约修改 为了增加图片信息上链溯源,需要对底层数据结构进行修改,在此对智能合约中的农产品数…...
push [特殊字符] present
push 🆚 present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中,push 和 present 是两种不同的视图控制器切换方式,它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...
Linux系统部署KES
1、安装准备 1.版本说明V008R006C009B0014 V008:是version产品的大版本。 R006:是release产品特性版本。 C009:是通用版 B0014:是build开发过程中的构建版本2.硬件要求 #安全版和企业版 内存:1GB 以上 硬盘…...
全面解析数据库:从基础概念到前沿应用
在数字化时代,数据已成为企业和社会发展的核心资产,而数据库作为存储、管理和处理数据的关键工具,在各个领域发挥着举足轻重的作用。从电商平台的商品信息管理,到社交网络的用户数据存储,再到金融行业的交易记录处理&a…...
云安全与网络安全:核心区别与协同作用解析
在数字化转型的浪潮中,云安全与网络安全作为信息安全的两大支柱,常被混淆但本质不同。本文将从概念、责任分工、技术手段、威胁类型等维度深入解析两者的差异,并探讨它们的协同作用。 一、核心区别 定义与范围 网络安全:聚焦于保…...
