MySQL-索引回顾
索引是面试高频问答题,参考百度/CSDN/尚硅谷/黑马程序员/阿里云开发者社区,决定将索引知识回顾一下,忘记时,点开即可,时刻保持更新,事不宜迟,即刻享用。
索引概述
索引(index)是帮助MySQL高效获取数据的数据结构(有序)。在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据, 这样就可以在这些数据结构上实现高级查找算法,这种数据结构就是索引。
表结构及其数据如下:
假如我们要执行的SQL语句为 :
select * from user where age = 45;
1). 无索引情况
在无索引情况下,就需要从第一行开始扫描,一直扫描到最后一行,我们称之为 全表扫描,性能很低。
2). 有索引情况
如果我们针对于这张表建立了索引,假设索引结构就是二叉树,那么也就意味着,会对age这个字段建立一个二叉树的索引结构。
此时我们在进行查询时,只需要扫描三次就可以找到数据了,极大的提高的查询的效率。
备注: 这里我们只是假设索引的结构是二叉树,介绍一下索引的大概原理,只是一个示意图,并不是索引的真实结构
特点
索引结构
概述
MySQL的索引是在存储引擎层实现的,不同的存储引擎有不同的索引结构,主要包含以下几种:
上述是MySQL中所支持的所有的索引结构,接下来,我们再来看看不同的存储引擎对于索引结构的支持情况。
注意: 我们平常所说的索引,如果没有特别指明,都是指B+树结构组织的索引。
二叉树
假如说MySQL的索引结构采用二叉树的数据结构,比较理想的结构如下:
如果主键是顺序插入的,则会形成一个单向链表,结构如下:
所以,如果选择二叉树作为索引结构,会存在以下缺点:
-
顺序插入时,会形成一个链表,查询性能大大降低。
-
大数据量情况下,层级较深,检索速度慢。
此时大家可能会想到,我们可以选择红黑树,红黑树是一颗自平衡二叉树,那这样即使是顺序插入数据,最终形成的数据结构也是一颗平衡的二叉树,结构如下:
但是,即使如此,由于红黑树也是一颗二叉树,所以也会存在一个缺点:
大数据量情况下,层级较深,检索速度慢。
所以,在MySQL的索引结构中,并没有选择二叉树或者红黑树,而选择的是B+Tree,那么什么是B+Tree呢?
参考之前的一篇文章:
为什么Mysql底层采用B+树做索引?
在详解B+Tree之前,先来介绍一个B-Tree。
B-Tree
B-Tree,B树是一种多叉路衡查找树,相对于二叉树,B树每个节点可以有多个分支,即多叉。以一颗最大度数(max-degree)为5(5阶)的b-tree为例,那这个B树每个节点最多存储4个key,5个指针:
特别注意:树的度数指的是一个节点的子节点个数。
这里推荐一个数据结构可视化的网站
B-Tree Visualization
插入一组数据: 100 65 169 368 900 556 780 35 215 1200 234 888 158 90 1000 88 120 268 250 。然后观察一些数据插入过程中,节点的变化情况。
特点:
-
5阶的B树,每一个节点最多存储4个key,对应5个指针。
-
一旦节点存储的key数量到达5,就会裂变,中间元素向上分裂。
-
在B树中,非叶子节点和叶子节点都会存放数据。
B+Tree
B+Tree是B-Tree的变种,我们以一颗最大度数(max-degree)为4(4阶)的b+tree为例,来看一下其结构示意图:
我们可以看到,两部分:
绿色框框起来的部分,是索引部分,仅仅起到索引数据的作用,不存储数据。
红色框框起来的部分,是数据存储部分,在其叶子节点中要存储具体的数据。
我们可以通过一个数据结构可视化的网站来简单演示一下,和刚才不一样,这个为B+Tree
B+ Tree Visualization
插入一组数据: 100 65 169 368 900 556 780 35 215 1200 234 888 158 90 1000 88 120 268 250 。然后观察一些数据插入过程中,节点的变化情况。
最终我们看到,B+Tree 与 B-Tree相比,主要有以下三点区别:
-
所有的数据都会出现在叶子节点。
-
叶子节点形成一个单向链表。
-
非叶子节点仅仅起到索引数据作用,具体的数据都是在叶子节点存放的。
上述我们所看到的结构是标准的B+Tree的数据结构,接下来,我们再来看看MySQL中优化之后的B+Tree。
MySQL索引数据结构对经典的B+Tree进行了优化。在原B+Tree的基础上,增加一个指向相邻叶子节点的链表指针,就形成了带有顺序指针的B+Tree,提高区间访问的性能,利于排序。
Hash
MySQL中除了支持B+Tree索引,还支持一种索引类型---Hash索引。
1). 结构
哈希索引就是采用一定的hash算法,将键值换算成新的hash值,映射到对应的槽位上,然后存储在hash表中。
如果两个(或多个)键值,映射到一个相同的槽位上,他们就产生了hash冲突(也称为hash碰撞),可以通过链表来解决。
2). 特点
-
A. Hash索引只能用于对等比较(=,in),不支持范围查询(between,>,< ,...)
-
B. 无法利用索引完成排序操作
-
C. 查询效率高,通常(不存在hash冲突的情况)只需要一次检索就可以了,效率通常要高于B+tree索引
3). 存储引擎支持
在MySQL中,支持hash索引的是Memory存储引擎。 而InnoDB中具有自适应hash功能,hash索引是InnoDB存储引擎根据B+Tree索引在指定条件下自动构建的。
为什么InnoDB存储引擎选择使用B+tree索引结构?
-
A. 相对于二叉树,层级更少,搜索效率高;
-
B. 对于B-tree,无论是叶子节点还是非叶子节点,都会保存数据,这样导致一页中存储的键值减少,指针跟着减少,要同样保存大量数据,只能增加树的高度,导致性能降低;
-
C. 相对Hash索引,B+tree支持范围匹配及排序操作;
索引分类
在MySQL数据库,将索引的具体类型主要分为以下几类:主键索引、唯一索引、常规索引、全文索引。
聚集索引&二级索引
而在在InnoDB存储引擎中,根据索引的存储形式,又可以分为以下两种:
聚集索引选取规则:
-
如果存在主键,主键索引就是聚集索引。
-
如果不存在主键,将使用第一个唯一(UNIQUE)索引作为聚集索引。
-
如果表没有主键,或没有合适的唯一索引,则InnoDB会自动生成一个rowid作为隐藏的聚集索引。
聚集索引和二级索引的具体结构如下:
聚集索引的叶子节点下挂的是这一行的数据 。
二级索引的叶子节点下挂的是该字段值对应的主键值。
接下来,我们来分析一下,当我们执行如下的SQL语句时,具体的查找过程是什么样子的。
具体过程如下:
①. 由于是根据name字段进行查询,所以先根据name='Arm'到name字段的二级索引中进行匹配查找。但是在二级索引中只能查找到 Arm 对应的主键值 10。
②. 由于查询返回的数据是*,所以此时,还需要根据主键值10,到聚集索引中查找10对应的记录,最终找到10对应的行row。
③. 最终拿到这一行的数据,直接返回即可。
回表查询: 这种先到二级索引中查找数据,找到主键值,然后再到聚集索引中根据主键值,获取数据的方式,就称之为回表查询
以下两条SQL语句,那个执行效率高? 为什么?
A. select * from user where id = 10 ;
B. select * from user where name = 'Arm' ;
备注: id为主键,name字段创建的有索引;
解答:
A 语句的执行性能要高于B 语句。
因为A语句直接走聚集索引,直接返回数据。 而B语句需要先查询name字段的二级索引,然后再查询聚集索引,也就是需要进行回表查询。
InnoDB主键索引的B+tree高度为多高呢?
假设:
一行数据大小为1k,一页中可以存储16行这样的数据。InnoDB的指针占用6个字节的空间,主键即使为bigint,占用字节数为8。
高度为2:
n * 8 + (n + 1) * 6 = 16*1024 , 算出n约为 1170
1171* 16 = 18736
也就是说,如果树的高度为2,则可以存储 18000 多条记录。
高度为3:
1171 * 1171 * 16 = 21939856
也就是说,如果树的高度为3,则可以存储 2200w 左右的记录。
开始步入正题,如何创建索引
索引语法
1). 创建索引
CREATE [ UNIQUE | FULLTEXT ] INDEX index_name ON table_name (
index_col_name,... ) ;
2). 查看索引
SHOW INDEX FROM table_name ;
3). 删除索引
DROP INDEX index_name ON table_name ;
演示一波:
先来创建一张表 tb_user,并且查询测试数据。
create table tb_user(
id int primary key auto_increment comment '主键',
name varchar(50) not null comment '用户名',
phone varchar(11) not null comment '手机号',
email varchar(100) comment '邮箱',
profession varchar(11) comment '专业',
age tinyint unsigned comment '年龄',
gender char(1) comment '性别 , 1: 男, 2: 女',
status char(1) comment '状态',
createtime datetime comment '创建时间'
) comment '系统用户表';
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('吕布', '17799990000', 'lvbu666@163.com', '软件工程', 23, '1','6', '2001-02-02 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('曹操', '17799990001', 'caocao666@qq.com', '通讯工程', 33,'1', '0', '2001-03-05 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('赵云', '17799990002', '17799990@139.com', '英语', 34, '1','2', '2002-03-02 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('孙悟空', '17799990003', '17799990@sina.com', '工程造价', 54,'1', '0', '2001-07-02 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('花木兰', '17799990004', '19980729@sina.com', '软件工程', 23,'2', '1', '2001-04-22 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('大乔', '17799990005', 'daqiao666@sina.com', '舞蹈', 22, '2','0', '2001-02-07 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('露娜', '17799990006', 'luna_love@sina.com', '应用数学', 24,'2', '0', '2001-02-08 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('程咬金', '17799990007', 'chengyaojin@163.com', '化工', 38,'1', '5', '2001-05-23 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('项羽', '17799990008', 'xiaoyu666@qq.com', '金属材料', 43,'1', '0', '2001-09-18 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('白起', '17799990009', 'baiqi666@sina.com', '机械工程及其自动化', 27, '1', '2', '2001-08-16 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('韩信', '17799990010', 'hanxin520@163.com', '无机非金属材料工程', 27, '1', '0', '2001-06-12 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('荆轲', '17799990011', 'jingke123@163.com', '会计', 29, '1','0', '2001-05-11 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('兰陵王', '17799990012', 'lanlinwang666@126.com', '工程造价',44, '1', '1', '2001-04-09 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('狂铁', '17799990013', 'kuangtie@sina.com', '应用数学', 43,'1', '2', '2001-04-10 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('貂蝉', '17799990014', '84958948374@qq.com', '软件工程', 40,'2', '3', '2001-02-12 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('妲己', '17799990015', '2783238293@qq.com', '软件工程', 31,'2', '0', '2001-01-30 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('芈月', '17799990016', 'xiaomin2001@sina.com', '工业经济', 35,'2', '0', '2000-05-03 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('嬴政', '17799990017', '8839434342@qq.com', '化工', 38, '1','1', '2001-08-08 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('狄仁杰', '17799990018', 'jujiamlm8166@163.com', '国际贸易',30, '1', '0', '2007-03-12 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('安琪拉', '17799990019', 'jdodm1h@126.com', '城市规划', 51,'2', '0', '2001-08-15 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('典韦', '17799990020', 'ycaunanjian@163.com', '城市规划', 52,'1', '2', '2000-04-12 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('廉颇', '17799990021', 'lianpo321@126.com', '土木工程', 19,'1', '3', '2002-07-18 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('后羿', '17799990022', 'altycj2000@139.com', '城市园林', 20,'1', '0', '2002-03-10 00:00:00');
INSERT INTO tb_user (name, phone, email, profession, age, gender, status,createtime) VALUES ('姜子牙', '17799990023', '37483844@qq.com', '工程造价', 29,'1', '4', '2003-05-26 00:00:00');
表结构中插入的数据如下:
数据准备好了之后,接下来,我们就来完成如下需求:
A. name字段为姓名字段,该字段的值可能会重复,为该字段创建索引。
CREATE INDEX idx_user_name ON tb_user(name);
B. phone手机号字段的值,是非空,且唯一的,为该字段创建唯一索引。
CREATE UNIQUE INDEX idx_user_phone ON tb_user(phone);
C. 为profession、age、status创建联合索引。
CREATE INDEX idx_user_pro_age_sta ON tb_user(profession,age,status);
D. 为email建立合适的索引来提升查询效率。
CREATE INDEX idx_email ON tb_user(email);
完成上述的需求之后,我们再查看tb_user表的所有的索引数据。
show index from tb_user;
相关文章:

MySQL-索引回顾
索引是面试高频问答题,参考百度/CSDN/尚硅谷/黑马程序员/阿里云开发者社区,决定将索引知识回顾一下,忘记时,点开即可,时刻保持更新,事不宜迟,即刻享用。 索引概述 索引(index&#…...

重新认识Elasticsearch-一体化矢量搜索引擎
前言 2023 哪个网络词最热?我投“生成式人工智能”一票。过去一年大家都在拥抱大模型,所有的行业都在做自己的大模型。就像冬日里不来件美拉德色系的服饰就会跟不上时代一样。这不前段时间接入JES,用上好久为碰的RestHighLevelClient包。心血…...

【附源码】基于SSM框架的房屋租赁系统的设计与实现
基于SSM框架的房屋租赁系统的设计与实现 🍅 作者主页 央顺技术团队 🍅 欢迎点赞 👍 收藏 ⭐留言 📝 🍅 文末获取源码联系方式 📝 项目运行 环境配置: Jdk1.8 Tomcat7.0 Mysql HBuilderX&…...

[SpringBoot]如何在一个普通类中获取一个Bean
最近在项目中出现了一个这种情况:我一顿操作猛如虎的写了好几个设计模式,然后在设计模式中的类中想将数据插入数据库,因此调用Mapper持久层,但是数据怎么都写不进去,在我一顿操作猛如虎的查找下,发现在普通…...
[ERROR] 不再支持目标选项 5。请使用 7 或更高版本
在编译spirng boot 3.x版本时,出现了以下错误. 出现这个错误: [ERROR] COMPILATION ERROR : [INFO] -------------------------------------------- [ERROR] 不再支持源选项 5。请使用 7 或更高版本。 [ERROR] 不再支持目标选项 5。请使用 7 或更高版本。 要指定版本: 解决办…...

EasyMR:为 AI 未来赋能,打造弹性大数据引擎的革命
如果要评一个2023科技圈的热搜榜,那么以人工智能聊天机器人 ChatGPT 为代表的 AI大模型 绝对会霸榜整个2023。 ChatGPT 于2022年11月30日发布。产品发布5日,注册用户数就超过100万。推出仅两个月后,它在2023年1月末的月活用户已经突破了1亿&…...
C //练习 4-10 另一种方法是通过getline函数读入整个输入行,这种情况下可以不使用getch与ungetch函数。请运用这一方法修改计算器程序。
C程序设计语言 (第二版) 练习 4-10 练习 4-10 另一种方法是通过getline函数读入整个输入行,这种情况下可以不使用getch与ungetch函数。请运用这一方法修改计算器程序。 注意:代码在win32控制台运行,在不同的IDE环境下…...

竞赛保研 基于深度学习的行人重识别(person reid)
文章目录 0 前言1 技术背景2 技术介绍3 重识别技术实现3.1 数据集3.2 Person REID3.2.1 算法原理3.2.2 算法流程图 4 实现效果5 部分代码6 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 基于深度学习的行人重识别 该项目较为新颖,适合…...

Ncast盈可视 高清智能录播系统 IPSetup.php信息泄露+RCE漏洞复现(CVE-2024-0305)
0x01 产品简介 Ncast盈可视 高清智能录播系统是广州盈可视电子科技有限公司一种先进的音视频录制和播放解决方案,旨在提供高质量、高清定制的录播体验。该系统采用先进的摄像和音频技术,结合强大的软件平台,可以实现高清视频录制、多路音频采集、实时切换和混音、定制视频分…...
GO语言Context的作用
文章目录 Context为什么需要Context多任务超时例子Context结构 Context各种使用方法创建contextvalueCtxvalueCtx结构体WithValue cancelCtxcancelCtx结构体withCancel timerCtxWithDeadlineWithTimeout 总结 Context 为什么需要Context Go语言需要Context主要是为了在并发环…...

金和OA C6 upload_json 任意文件上传漏洞
产品介绍 金和网络是专业信息化服务商,为城市监管部门提供了互联网监管解决方案,为企事业单位提供组织协同OA系统开发平台,电子政务一体化平台,智慧电商平台等服务。 漏洞概述 金和 OA C6 upload_json接口处存在任意文件上传漏洞,攻击者可以通过构造特殊请求包上…...
大模型学习第四课
学习目标: XTuner 大模型单卡低成本微调实战 学习内容: Finetune简介XTuner介绍8GB显卡玩转LLM动手实战环节 学习时间: 20240110 学习产出: Finetune简介 增量预训练微调指令跟随微调LoRA,QLoRAXTuner 简介:适配多…...
Code Runner使用外部控制台,运行结束后等待用户输入
问题描述 网上让程序运行结束暂停的方法大多数只有两种: 1.末尾加上system(“pause”) 2.start /k cmd 第一种方法每一个程序都需要在最后加上这条命令很烦; 第二章方法cmd窗口在程序运行结束后不会自动关闭,需要用户手动关闭 我想找到一种…...
IC设计的前端和后端是如何区分的?
一、工作着重点不同 **1、IC前端:**根据芯片规格书完成SOC的设计和集成, 使用仿真验证工具完成SOC的设计验证。 **2、IC后端:**将前端设计产生的门级网表通过EDA设计工具进行布局布线和进行物理验证并最终产生供制造用的GDSII数据 二、工作…...

Unity WebView 中文输入支持
使用版本:Vuplex 3D WebView for Windows v4.4; 测试环境:unity editor 2020.3.40f1c1、Windows; 1、打开脚本CanvasWebVie!wPrefab 2、找到_initCanvasPrefab方法,约略在459行附近 3、添加一行代码: …...

x-cmd pkg | trdsql - 能对 CSV、LTSV、JSON 和 TBLN 执行 SQL 查询的工具
目录 简介首次用户技术特点竞品和相关作品进一步阅读 简介 trdsql 是一个使用 sql 作为 DSL 的强大工具: 采用 SQL 对 CSV、LTSV、JSON 和 TBLN 文件执行查询与 MySQL,Postgresql,Sqlite 的 Driver 协同,可以实现对应数据库的表与文件的 JO…...

Camunda Spin
Spin 常用于在脚本中解析json或者xml使用,S(variable) 表示构造成Spin对象,通过prop(“属性名”)获取属性值,通过stringValue()、numberValue()、boolValue() 等对类型转换。 repositoryService.createDeployment().name("消息事件流程&…...
strlen/Memcpy_s/strncasecmp
strlen 声明:size_t strlen(const char *str) 举例: #include <stdio.h> #include <string.h>int main () {char str[50];int len;strcpy(str, "This is runoob.com");len strlen(str);printf("|%s| 的长度是 |%d|\n"…...

水经微图安卓版APP正式上线!
在水经微图APP(简称“微图APP”)安卓版已正式上线! 在随着IOS版上线约一周之后,安卓版终于紧随其后发布了。 微图安卓版APP下载安装 自从IOS版发布之后,就有用户一直在问安卓版什么时候发布,这里非常感谢…...

数据结构第十二弹---堆的应用
堆的应用 1、堆排序2、TopK问题3、堆的相关习题总结 1、堆排序 要学习堆排序,首先要学习堆的向下调整算法,因为要用堆排序,你首先得建堆,而建堆需要执行多次堆的向下调整算法。 但是,使用向下调整算法需要满足一个前提…...

STM32标准库-DMA直接存储器存取
文章目录 一、DMA1.1简介1.2存储器映像1.3DMA框图1.4DMA基本结构1.5DMA请求1.6数据宽度与对齐1.7数据转运DMA1.8ADC扫描模式DMA 二、数据转运DMA2.1接线图2.2代码2.3相关API 一、DMA 1.1简介 DMA(Direct Memory Access)直接存储器存取 DMA可以提供外设…...
【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表
1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...

【单片机期末】单片机系统设计
主要内容:系统状态机,系统时基,系统需求分析,系统构建,系统状态流图 一、题目要求 二、绘制系统状态流图 题目:根据上述描述绘制系统状态流图,注明状态转移条件及方向。 三、利用定时器产生时…...

学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”
2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...
Java编程之桥接模式
定义 桥接模式(Bridge Pattern)属于结构型设计模式,它的核心意图是将抽象部分与实现部分分离,使它们可以独立地变化。这种模式通过组合关系来替代继承关系,从而降低了抽象和实现这两个可变维度之间的耦合度。 用例子…...

解析奥地利 XARION激光超声检测系统:无膜光学麦克风 + 无耦合剂的技术协同优势及多元应用
在工业制造领域,无损检测(NDT)的精度与效率直接影响产品质量与生产安全。奥地利 XARION开发的激光超声精密检测系统,以非接触式光学麦克风技术为核心,打破传统检测瓶颈,为半导体、航空航天、汽车制造等行业提供了高灵敏…...
Linux系统部署KES
1、安装准备 1.版本说明V008R006C009B0014 V008:是version产品的大版本。 R006:是release产品特性版本。 C009:是通用版 B0014:是build开发过程中的构建版本2.硬件要求 #安全版和企业版 内存:1GB 以上 硬盘…...

解析两阶段提交与三阶段提交的核心差异及MySQL实现方案
引言 在分布式系统的事务处理中,如何保障跨节点数据操作的一致性始终是核心挑战。经典的两阶段提交协议(2PC)通过准备阶段与提交阶段的协调机制,以同步决策模式确保事务原子性。其改进版本三阶段提交协议(3PC…...

rm视觉学习1-自瞄部分
首先先感谢中南大学的开源,提供了很全面的思路,减少了很多基础性的开发研究 我看的阅读的是中南大学FYT战队开源视觉代码 链接:https://github.com/CSU-FYT-Vision/FYT2024_vision.git 1.框架: 代码框架结构:readme有…...
StarRocks 全面向量化执行引擎深度解析
StarRocks 全面向量化执行引擎深度解析 StarRocks 的向量化执行引擎是其高性能的核心设计,相比传统行式处理引擎(如MySQL),性能可提升 5-10倍。以下是分层拆解: 1. 向量化 vs 传统行式处理 维度行式处理向量化处理数…...