C++11使用多线程(线程池)计算相似度实现性能优化
需求:图像识别中,注册的样本多了会影响计算速度,成为性能瓶颈,其中一个优化方法就是使用多线程。例如,注册了了3000个特征,每个特征4096个float。可以把3000个特征比对放到4个线程中进行计算,然后再把结果进行合并。实现思路:
1. 根据系统性能和需求配置线程池的大小,创建线程池,将比较任务平均分配到各个线程
2. 工作线程启动后在一个condition_variable上wait,注意:锁的范围不能太大了,否则多个线程会变成串行
3. 调用者调用识别接口,接口更新目标特征,通知各个工作线程,在另外一个condition_variable上wait,并且满足完成计数器的值等于线程数
4. 工作线程完成后将计数器加一,并且通知调用线程
5. 调用线程收集到所有线程的结果后再对结果进行合并返回
后续:
1. 代码进行优化,更优雅的实现
测试结果:
线程数 | 时间 |
1 | 71362ms |
2 | 36292ms |
4 | 19420ms |
8 | 18465ms |
16 | 18433ms |
32 | 18842ms |
64 | 19324ms |
128 | 19388ms |
256 | 21853ms |
512 | 26150ms |
1024 | 35593ms |
代码如下:
#include <iostream>
#include <string>
#include <cstring>
#include <mutex>
#include <unordered_map>
#include <list>
#include <utility>
#include <algorithm>
#include <string>
#include <vector>
#include <thread>
#include <chrono>
using namespace std;
using namespace chrono;
double get_mold(const vector<double> &vec)
{
int n = vec.size();
double sum = 0.0;
for(int i = 0; i < n; ++i)
{
sum += vec[i] * vec[i];
}
return sqrt(sum);
}
double cosine_distance(const vector<double> &base, const vector<double> &target)
{
int n = base.size();
double tmp = 0.0;
for(int i = 0; i < n; ++i)
{
tmp += base[i] * target[i];
}
double simility = tmp / (get_mold(base) * get_mold(target));
return simility;
}
class Recognizer
{
public:
Recognizer(int num_threads) :
num_threads_(num_threads),
is_run_calculate_thread_(true),
is_doing_recognize(false),
result_count(0)
{
recognize_result = std::vector<RecognizeResult>(num_threads);
this->load_feature();
this->init_threads();
}
~Recognizer()
{
is_run_calculate_thread_ = false;
cv_.notify_all();
for(std::thread &th : threads_)
th.join();
}
int do_recognize(const vector<double> &feature);
private:
class CigaretteItem
{
public:
int cigarette_id_;
std::string cigarette_name_;
std::vector<double> feature_;
CigaretteItem(int cigarette_id, std::string cigarette_name, const std::vector<double> &cigarette_feature)
{
cigarette_id_ = cigarette_id;
cigarette_name_ = cigarette_name;
feature_ = std::vector<double>(cigarette_feature.size());
for(int i = 0; i < cigarette_feature.size(); i++)
{
feature_[i] = cigarette_feature[i];
}
}
};
class RecognizeResult
{
public:
int cigarette_id_;
std::string cigarette_name_;
double score_;
};
private:
int num_threads_;
bool is_run_calculate_thread_;
bool is_doing_recognize;
std::vector<CigaretteItem> ciagarette_list_;
std::vector<double> target_feature_;
std::mutex cv_mtx_;
std::condition_variable cv_;
std::vector<RecognizeResult> recognize_result;
std::vector<std::thread> threads_;
int result_count;
std::mutex result_count_mtx_;
std::mutex result_cv_mtx_;
std::condition_variable result_cv_;
private:
Recognizer(const Recognizer&) = delete;
Recognizer& operator=(const Recognizer&) = delete;
void load_feature();
void init_threads();
void calculate_most_similarity(const int thread_id, const int start_index, const int end_index);
};
void Recognizer::load_feature()
{
for(int i = 0; i < 3000; i++)
{
vector<double> fea = vector<double>(4096);
for(int i = 0; i < 4096; ++i)
fea[i] = (double)(rand() % 998 + 1) / 1000.00;
ciagarette_list_.emplace_back(i+1, "cigarette", fea);
}
}
void Recognizer::init_threads()
{
for(int i = 0; i < num_threads_; i++)
{
int step = this->ciagarette_list_.size() / this->num_threads_;
int start_index = i * step;
int end_index = (i+1) * step;
if(i == num_threads_ - 1){
end_index = ciagarette_list_.size();
}
std::cout << "thread" << i << " starts at " << start_index << "; ends at " << end_index << std::endl;
threads_.emplace_back(&Recognizer::calculate_most_similarity, this, i, start_index, end_index);
}
}
void Recognizer::calculate_most_similarity(const int thread_id, const int start_index, const int end_index)
{
while(is_run_calculate_thread_)
{
{
std::unique_lock<std::mutex> lock(cv_mtx_);
cv_.wait(lock);
}
//cout << "thread" << thread_id << " is running" << endl;
double max_score = -1.00;
int max_score_index = -1;
for(int i = start_index; i < end_index; ++i){
double score = cosine_distance(ciagarette_list_[i].feature_, target_feature_);
if(score > max_score)
{
max_score = score;
max_score_index = i;
}
}
recognize_result[thread_id].cigarette_id_ = ciagarette_list_[max_score_index].cigarette_id_;
recognize_result[thread_id].cigarette_name_ = ciagarette_list_[max_score_index].cigarette_name_;
recognize_result[thread_id].score_ = max_score;
{
std::unique_lock<std::mutex> lock(result_count_mtx_);
result_count += 1;
}
result_cv_.notify_one();
//std::cout << "thread" << thread_id << " finish one task" << endl;
}
//std::cout << "thread" << thread_id << " finished." << std::endl;
}
int Recognizer::do_recognize(const vector<double> &feature)
{
if(is_doing_recognize)
return -1;
is_doing_recognize = true;
this->target_feature_ = feature;
//cout << "cv_.notify_all()" << endl;
cv_.notify_all();
std::unique_lock<std::mutex> lock(result_cv_mtx_);
result_cv_.wait(lock, [this](){return this->num_threads_ == this->result_count;});
//std::cout << "all threads finish computing similarity" << endl;
int max_score_cigarette_id = -1;
std::string max_score_cigarette_name = "";
double max_score = -1.0;
for(int i = 0; i < num_threads_; ++i)
{
if(recognize_result[i].score_ > max_score)
{
max_score_cigarette_id = recognize_result[i].cigarette_id_;
max_score_cigarette_name = recognize_result[i].cigarette_name_;
max_score = recognize_result[i].score_;
}
}
//cout << "cigarette_id=" << max_score_cigarette_id << ", cigarette_name=" << max_score_cigarette_name << ", score=" << max_score << endl;
this->result_count = 0;
is_doing_recognize = false;
return 0;
}
int main(void)
{
Recognizer recognizer{1024};
std::this_thread::sleep_for(std::chrono::seconds(1));
const int loops = 400;
auto start_time = system_clock::now();
for(int i = 0; i < loops; i++)
{
//cout << endl;
std::vector<double> target_feature = std::vector<double>(4096);
for(int i = 0; i < 4096; ++i)
{
//target_feature[i] = (double)(rand() % 998 + 1) / 1000.000;
target_feature[i] = (double)(i % 1000 + 1) / 1000.00;
}
recognizer.do_recognize(target_feature);
//if((i+1) % 20 == 0)
// cout << "i=" << i << endl;
}
auto end_time = system_clock::now();
auto duration = duration_cast<milliseconds>(end_time - start_time);
cout << "eplased_time:" << duration.count() << "ms" << endl;
std::this_thread::sleep_for(std::chrono::seconds(2));
return 0;
}
相关文章:
C++11使用多线程(线程池)计算相似度实现性能优化
需求:图像识别中,注册的样本多了会影响计算速度,成为性能瓶颈,其中一个优化方法就是使用多线程。例如,注册了了3000个特征,每个特征4096个float。可以把3000个特征比对放到4个线程中进行计算,然…...

【测绘程序设计】——平面坐标转换
测绘工程中经常遇到平面坐标转换——比如,北京54(或西安80)平面坐标转换成CGCS2000平面坐标、工程独立坐标系平面坐标转换成CGCS2000平面坐标等,常用转换模型包括:①三参数法(2平移+1旋转);②四参数法(赫尔默特法,2平移+1旋转+1尺度);③六参数法(仿射变换法,2平移…...

五子棋的设计与实现
术:Java等摘要:五子棋是一种两人对弈的纯策略型棋类游戏,非常容易上手,老少皆宜。为了更好的推广五子棋,研究简单的人工智能方式,运用Java开发五子棋游戏。主要包含了人机对战,棋盘初始化&#…...
大数据项目软硬件选择
目录 一.技术选型 二.系统数据流程设计 三.框架版本选型 如何选择Apache/CDH/HDP版本...

redis数据结构的适用场景分析
1、String 类型的内存空间消耗问题,以及选择节省内存开销的数据类型的解决方案。 为什么 String 类型内存开销大? 图片 ID 和图片存储对象 ID 都是 10 位数,我们可以用两个 8 字节的 Long 类型表示这两个 ID。因为 8 字节的 Long 类型最大可以…...
同步、异步、全双工、半双工的区别
1、通讯 1.1 并行通讯 定义:一条信息的各位数据被同时传送的通讯方式称为并行通讯; 特点: 各个数据位同时发送,传送速度快、效率高,但有多少数据位就需要多少根数据线,因此传送成本高,并且只…...

ClickHouse 与 Amazon S3 结合?一起来探索其中奥秘
目录ClickHouse 简介ClickHouse 与对象存储ClickHouse 与 S3 结合的三种方法示例参考架构小结参考资料ClickHouse 简介ClickHouse 是一种快速的、开源的、用于联机分析(OLAP)的列式数据库管理系统(DBMS),由俄罗斯的Yan…...

【Spark分布式内存计算框架——Structured Streaming】1. Structured Streaming 概述
前言 Apache Spark在2016年的时候启动了Structured Streaming项目,一个基于Spark SQL的全新流计算引擎Structured Streaming,让用户像编写批处理程序一样简单地编写高性能的流处理程序。 Structured Streaming并不是对Spark Streaming的简单改进…...

【Windows】【Linux】---- Java证书导入
问题: PKIX path building failed: sun.security.provider.certpath.SunCertPathBuilderException: unable to find valid certification path to requested target 无法找到请求目标的有效证书路径 一、Windows—java证书导入 1、下载证书到本地(以下…...

【Linux学习】菜鸟入门——gcc与g++简要使用
一、gcc/g gcc/g是编译器,gcc是GCC(GUN Compiler Collection,GUN编译器集合)中的C编译器;g是GCC中的C编译器。使用g编译文件时会自动链接STL标准库,而gcc不会自动链接STL标准库。下面简单介绍一下Linux环境下(Windows差…...
Cadence Allegro 导出Bill of Material Report详解
⏪《上一篇》 🏡《总目录》 ⏩《下一篇》 目录 1,概述2,Assigned Functions Report作用3,Assigned Functions Report示例4,Assigned Functions Report导出方法4.1,方法14.2,方法2B站关注“硬小二”浏览更多演示视频...

localStorage线上问题的思考
一、背景: localStorage作为HTML5 Web Storage的API之一,使用标准的键值对(Key-Value,简称KV)数据类型主要作用是本地存储。本地存储是指将数据按照键值对的方式保存在客户端计算机中,直到用户或者脚本主动清除数据&a…...
什么是DNS域名解析
什么是DNS域名解析?因特网上作为域名和IP地址相互映射的一个分布式数据库,能够使用户更方便的访问互联网,而不用去记住能够被机器直接读取的IP数串。通过主机名,得到该主机名对应的IP地址的过程叫做域名解析。正向解析:…...
Cadence Allegro 导出Assigned Functions Report详解
⏪《上一篇》 🏡《总目录》 ⏩《下一篇》 目录 1,概述2,Assigned Functions Report作用3,Assigned Functions Report示例4,Assigned Functions Report导出方法4.1,方法14.2,方法2B站关注“硬小二”浏览更多演示视频...

Python中Opencv和PIL.Image读取图片的差异对比
近日,在进行深度学习进行推理的时候,发现不管怎么样都得不出正确的结果,再仔细和正确的代码进行对比了后发现原来是Python中不同的库读取的图片数组是有差异的。 image np.array(Image.open(image_file).convert(RGB)) image cv2.imread(…...

win10 WSL2 使用Ubuntu配置与安装教程
Win10 22H2ubuntu 22.04ROS2 文章目录一、什么是WSL2二、Win10 系统配置2.1 更新Windows版本2.2 Win10系统启用两个功能2.3 Win10开启BIOS/CPU开启虚拟化(VT)(很关键)2.4 下载并安装wsl_update_x64.msi2.5 PowerShell安装组件三、PowerShell安装Ubuntu3.…...
LeetCode每日一题(28. Find the Index of the First Occurrence in a String)
Given two strings needle and haystack, return the index of the first occurrence of needle in haystack, or -1 if needle is not part of haystack. Example 1: Input: haystack “sadbutsad”, needle “sad” Output: 0 Explanation: “sad” occurs at index 0 and…...

Android 圆弧形 SeekBar
效果预览package com.gcssloop.widget;import android.annotation.SuppressLint;import android.content.Context;import android.content.res.TypedArray;import android.graphics.Canvas;import android.graphics.Color;import android.graphics.Matrix;import android.graph…...

java 字典
java 字典 数据结构总览 Map Map 描述的是一种映射关系,一个 key 对应一个 value,可以添加,删除,修改和获取 key/value,util 提供了多种 Map HashMap: hash 表实现的 map,插入删除查找性能都是 O(1)&…...

【企业服务器LNMP环境搭建】mysql安装
MySQL安装步骤: 1、相关说明 1.1、编译参数的说明 -DCMAKE_INSTALL_PREFIX安装到的软件目录-DMYSQL_DATADIR数据文件存储的路径-DSYSCONFDIR配置文件路径 (my.cnf)-DENABLED_LOCAL_INFILE1使用localmysql客户端的配置-DWITH_PARTITION_STORAGE_ENGINE使mysql支持…...

未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?
编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度
一、引言:多云环境的技术复杂性本质 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,基础设施的技术债呈现指数级积累。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...
进程地址空间(比特课总结)
一、进程地址空间 1. 环境变量 1 )⽤户级环境变量与系统级环境变量 全局属性:环境变量具有全局属性,会被⼦进程继承。例如当bash启动⼦进程时,环 境变量会⾃动传递给⼦进程。 本地变量限制:本地变量只在当前进程(ba…...
【SpringBoot】100、SpringBoot中使用自定义注解+AOP实现参数自动解密
在实际项目中,用户注册、登录、修改密码等操作,都涉及到参数传输安全问题。所以我们需要在前端对账户、密码等敏感信息加密传输,在后端接收到数据后能自动解密。 1、引入依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId...
多模态商品数据接口:融合图像、语音与文字的下一代商品详情体验
一、多模态商品数据接口的技术架构 (一)多模态数据融合引擎 跨模态语义对齐 通过Transformer架构实现图像、语音、文字的语义关联。例如,当用户上传一张“蓝色连衣裙”的图片时,接口可自动提取图像中的颜色(RGB值&…...
CRMEB 框架中 PHP 上传扩展开发:涵盖本地上传及阿里云 OSS、腾讯云 COS、七牛云
目前已有本地上传、阿里云OSS上传、腾讯云COS上传、七牛云上传扩展 扩展入口文件 文件目录 crmeb\services\upload\Upload.php namespace crmeb\services\upload;use crmeb\basic\BaseManager; use think\facade\Config;/*** Class Upload* package crmeb\services\upload* …...
laravel8+vue3.0+element-plus搭建方法
创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...
作为测试我们应该关注redis哪些方面
1、功能测试 数据结构操作:验证字符串、列表、哈希、集合和有序的基本操作是否正确 持久化:测试aof和aof持久化机制,确保数据在开启后正确恢复。 事务:检查事务的原子性和回滚机制。 发布订阅:确保消息正确传递。 2、性…...

Vue ③-生命周期 || 脚手架
生命周期 思考:什么时候可以发送初始化渲染请求?(越早越好) 什么时候可以开始操作dom?(至少dom得渲染出来) Vue生命周期: 一个Vue实例从 创建 到 销毁 的整个过程。 生命周期四个…...

从物理机到云原生:全面解析计算虚拟化技术的演进与应用
前言:我的虚拟化技术探索之旅 我最早接触"虚拟机"的概念是从Java开始的——JVM(Java Virtual Machine)让"一次编写,到处运行"成为可能。这个软件层面的虚拟化让我着迷,但直到后来接触VMware和Doc…...