【算法每日一练]-动态规划 (保姆级教程 篇16) #纸带 #围栏木桩 #四柱河内塔
目录
今日知识点:
计算最长子序列的方案个数,类似最短路径个数问题
四柱河内塔问题:dp[i]=min{ (p[i-k]+f[k])+dp[i-k] }
纸带
围栏木桩
四柱河内塔
纸带
思路:
我们先设置dp[i]表示从i到n的方案数。
那么减法操作中:i可以移动到[1,i-1]中的任意一个格子。反过来可以认为:i可以从i+1到n转移过来。所以得出dp[i]=dp[i+1]+…dp[n];(使用后缀和即可)
然后除法操作中:i可以移动到[1,i/2]中的任意一个格子。反过来可以认为:i可以从x/2==i的任意x移动过来。所以得出dp[i]+=sum[i*j]-sum[i*j+j](i*j<=n)
#include <bits/stdc++.h>
using namespace std;
const int N=4e6+5;
int n,mod,dp[N],sum[N];int main(){cin>>n>>mod;dp[n]=sum[n]=1;for(int i=n-1;i>=1;i--){dp[i]=sum[i+1];//减法for(int j=2;j*i<=n;j++){//除法int r=min(n,i*j+j-1);dp[i]=(dp[i]+sum[i*j]-sum[r+1])%mod;}sum[i]=(sum[i+1]+dp[i])%mod;} cout<<dp[1];
}
围栏木桩
输入:
3
9 10 1 9 8 7 6 3 4 6
3 100 70 102
6 40 37 23 89 91 12
思路:
其实就是先找最长上升子序列,然后再求有多少个最长的上升子序列。
首先设置dp[i]表示以i结尾的最长上升子序列。
转移:(i能拼在j后面的话)dp[i]=max(dp[j])+1;
那么要求有多少个最长上升子序列的话就要进行修改,
把dp[i]=max(dp[j])+1改成 if(dp[j]+1>dp[i]) dp[i]=dp[j]+1;
这样的话就能知道什么时候修改了dp[i],当修改dp[i]的时候自然是因为i可以拼在j之后且拼完后dp[i]会变大。
故:f[i]=f[j]
当dp[j]+1=dp[i]时候,说明i即便拼在j后面dp也不会变化,那就说明拼在这个j后面也是最优解。
故:f[i]+=f[j]
类似最短路径个数问题嘛!
#include <bits/stdc++.h>
using namespace std;
const int N=27;
int n,m,h[N],dp[N],f[N],ans1,ans2;int main(){cin>>m;while(m--){cin>>n;ans1=0;ans2=0;for(int i=1;i<=n;i++){cin>>h[i];dp[i]=f[i]=1;}for(int i=2;i<=n;i++)for(int j=i-1;j;j--){if(h[j]<=h[i]){if(dp[j]+1>dp[i]){//更新最优解就继承dp[i]=dp[j]+1;f[i]=f[j];}else if(dp[j]+1==dp[i])//当前的j也是可以使变成最优解的jf[i]+=f[j];}}for(int i=1;i<=n;i++)ans1=max(ans1,dp[i]);for(int i=1;i<=n;i++)if(dp[i]==ans1)ans2+=f[i];cout<<ans1<<" "<<ans2<<'\n';}
}
四柱河内塔
思路:
这道题听过的很简单,没见过的确实很难做了。
首先我们从最简单的3柱开始:就如下图,对于n柱的河内塔把第一柱上面n-1个放到中间的柱子上,然后剩下的一个放到最右边,然后就转化成了把n-1个盘子的三柱河内塔问题。
设置dp[i]表示i个盘子的三柱河内塔问题。
那么对应转移方程:dp[i]=(dp[i-1]+1)+dp[i-1]=2*dp[i-1]+1
那么现在来考虑四柱河内塔情况:
对于n个盘子的四柱河内塔,我们先将上面的n-k个放到任意一柱上,然后剩余的k个放到最右边柱子。最后也转化成了n-k个盘子的四柱河内塔问题。
要注意的一点是:在转移k个盘子的情况属于3柱的河内塔问题,因为有一柱是不能使用的。
转移方程:dp[i]=(p[i-k]+f[k])+dp[i-k] 其中f[k]是三柱k个盘子的河内塔问题。dp[i-k]是四柱n-k个盘子的河内塔问题。但是我们并不确定到底是让k取多少,但是我们确定的是k的选值必须使得dp[i]最小。那么就有dp[i]=min{ (p[i-k]+f[k])+dp[i-k] }
下面是代码部分
#include <bits/stdc++.h>
using namespace std;
const int INF=0x3f3f3f3f;
int f,dp[55];
int main(){cin>>f;memset(dp,INF,sizeof(dp));dp[0]=0;dp[1]=1;dp[2]=3;//初始化cout<<1<<'\n'<<3<<'\n';for(int i=3;i<=f;i++){for(int j=1;j<i;j++){if(dp[i]>2*dp[i-j]+pow(2,j)-1)//pow(2,j)-1就是f[j]的值dp[i]=2*dp[i-j]+pow(2,j)-1;}cout<<dp[i]<<'\n';}
}
相关文章:

【算法每日一练]-动态规划 (保姆级教程 篇16) #纸带 #围栏木桩 #四柱河内塔
目录 今日知识点: 计算最长子序列的方案个数,类似最短路径个数问题 四柱河内塔问题:dp[i]min{ (p[i-k]f[k])dp[i-k] } 纸带 围栏木桩 四柱河内塔 纸带 思路: 我们先设置dp[i]表示从i到n的方案数。 那么减法操作中ÿ…...

Grounding 模型 + SAM 报错
引入 Grounding 目标检测模型串联 SAM 从而实现实例分割任务,目前支持 Grounding DINO 和 GLIP 参考教程 MMDetection-SAM 如果是 Grounding DINO 则安装如下依赖即可 cd playground pip install githttps://github.com/facebookresearch/segment-anything.git pip…...

linux 网络基础配置
将Linux主机接入到网络,需要配置网络相关设置一般包括如下内容: 主机名 iP/netmask (ip地址,网关) 路由:默认网关 网络连接状态 DNS服务器 (主DNS服务器 次DNS服务器 第三个DNS服务器) 一、…...
leetcode-相同的树
100. 相同的树 使用递归的方法 # Definition for a binary tree node. # class TreeNode: # def __init__(self, val0, leftNone, rightNone): # self.val val # self.left left # self.right right class Solution:def isSameTree(self, p: …...
Leetcode17-好数对的数目(1512)
1、题目 给你一个整数数组 nums 。 如果一组数字 (i,j) 满足 nums[i] nums[j] 且 i < j ,就可以认为这是一组 好数对 。 返回好数对的数目。 示例 1: 输入:nums [1,2,3,1,1,3] 输出:4 解释:有 4 组好数对&am…...

Ubuntu22.04开机左上角下划线闪烁不开机
按下CtrlAltF2,打开TTY系统,然后通过用户名和密码登录,随后使用 sudo apt --fix-broken install 根据提示排除错误信息,然后使用apt安装lightdm安装就行。 tips:当使用EasyConnect的时候,你可能参考了下面这篇文章知…...

提升测试多样性,揭秘Pytest插件pytest-randomly
大家可能知道在Pytest测试生态中,插件扮演着不可或缺的角色,为开发者提供了丰富的功能和工具。其中,pytest-randomly 插件以其能够引入随机性的特性而备受欢迎。本文将深入探讨 pytest-randomly 插件的应用,以及如何通过引入随机性…...

C++学习笔记(三十二):c++ 堆内存与栈内存比较
本节对堆和栈内存进行描述。 应用程序启动后,操作系统将整个程序加载到内存,分配相应的物理ram,确保程序可以正常运行。堆和栈是ram中存在的两个区域。栈通常是一个预定义大小的内存区域,一般是2M字节左右。堆也是预定了默认值的…...

探索Shadowsocks-Android:保护你的网络隐私
探索Shadowsocks-Android:保护你的网络隐私 I. 引言 在数字时代,网络隐私和安全变得愈发重要。我们越来越依赖互联网,但同时也面临着各种网络限制和监控。在这个背景下,Shadowsocks-Android应用程序应运而生,为用户提…...

蓝桥杯练习题(二)
📑前言 本文主要是【算法】——蓝桥杯练习题(二)的文章,如果有什么需要改进的地方还请大佬指出⛺️ 🎬作者简介:大家好,我是听风与他🥇 ☁️博客首页:CSDN主页听风与他 …...

将文本文件导入Oracle数据库的简便方法:SQL Developer
需求 我有一个文本文件dbim.txt,是通过alert log生成的,内容如下: 2020-09-11 2020-09-11 ... 2023-12-03 2023-12-03 2023-12-26我已经在Oracle数据库中建立了目标表: create table dbim(a varchar(16));我想把日志文件导入Or…...
Mac iTerm2 配置
Mac iTerm2 配置 安装 brew install iTerm2安装完成之后,需要重新打开终端,既可以看见安装 iTerm2 的效果。 iTerm2 美化 使用 oh-my-zsh 美化 iTerm2 终端 安装 brew install wget sh -c "$(wget https://raw.github.com/ohmyzsh/ohmyzsh/mast…...

R语言下载安装及VScode配置
文章目录 1. R 下载和安装1.1 下载1.2 安装 2. VSCODE 配置2.1 安装R拓展2.2 安装R语言辅助功能包2.3 DEBUG 1. R 下载和安装 1.1 下载 网址:https://www.r-project.org/ 选择一个镜像地址下载 选择对应的版本 一般选择base即可 1.2 安装 下载安装包后按提示安装…...

【hyperledger-fabric】部署Java应用远程访问智能合约
简介 首先是根据b站的视频 hyperledger-fabric【3】在 java 应用中访问合约 以及hyperledger-fabric【5】Java应用和私有数据,本文章主要讲述的是视频中我遇到的问题,以及相关知识点的总结。 遇到的问题 问题1:git clone下载下来的代码发现…...

SpringBoot 调用mybatis报错:Invalid bound statement (not found):
启动SpringBoot报错:Invalid bound statement (not found): 参考此文排查 命中了第6条 记录一手坑爹的Invalid bound statement (not found)(六个方面) mapper文件路径配置错误 订正以后 问题解决...

PHP开发日志 ━━ 不同方法判断某个数组中是否存在指定的键名,测试哪种方法效率高
我们可以用isset($arr[a]) 或者 array_key_exists(a, $arr) 来判断a键名是否存在与$arr数组。 那么这两种方式哪个运行速度快呢? 不多废话了,现在我们写一段代码来测试一下: $array [a > 1, b > 2, c > 3];$start microtime(tru…...

【pytorch学习】 深度学习 教程 and 实战
pytorch编程实战博主:https://github.com/lucidrains https://github.com/lucidrains/vit-pytorch...
js中和Vue中的事件委托(事件代理)的实现方法
目录 一、事件委托(事件代理) 1、事件委托的优点 2、事件委托的缺点 3、为什么要使用事件委托 4、事件委托实现原理 5、DOM事件流 6、事件委托的实现方法 1、vue写法 1.1、html代码 1.2、js代码 2、原生的写法其实也差不多: 2.1、…...

C++学习笔记——对象的指针
目录 一、对象的指针 二、减少对象的复制开销 三、应用案例 游戏引擎 图像处理库 数据库管理系统 航空航天软件 金融交易系统 四、代码的案例应用 一、对象的指针 是一种常用的技术,用于处理对象的动态分配和管理。使用对象的指针可以实现以下几个方面的功…...

QT5.14 实现ModbusTCP客户端 Demo
本文在QT5.14平台,基于QModbusClientTcp类,实现了客户端对单个寄存器的读写,用ModbusSlave做服务器做测试。 1.界面 (1)更改读按钮的名称为bt_Read (2)更改写按钮的名称为bt_Write 2.修改pro文件的第三行 greaterThan(QT_MAJOR_VERSION, 4)…...

以下是对华为 HarmonyOS NETX 5属性动画(ArkTS)文档的结构化整理,通过层级标题、表格和代码块提升可读性:
一、属性动画概述NETX 作用:实现组件通用属性的渐变过渡效果,提升用户体验。支持属性:width、height、backgroundColor、opacity、scale、rotate、translate等。注意事项: 布局类属性(如宽高)变化时&#…...

376. Wiggle Subsequence
376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级
在互联网的快速发展中,高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司,近期做出了一个重大技术决策:弃用长期使用的 Nginx,转而采用其内部开发…...

Python爬虫(一):爬虫伪装
一、网站防爬机制概述 在当今互联网环境中,具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类: 身份验证机制:直接将未经授权的爬虫阻挡在外反爬技术体系:通过各种技术手段增加爬虫获取数据的难度…...

用docker来安装部署freeswitch记录
今天刚才测试一个callcenter的项目,所以尝试安装freeswitch 1、使用轩辕镜像 - 中国开发者首选的专业 Docker 镜像加速服务平台 编辑下面/etc/docker/daemon.json文件为 {"registry-mirrors": ["https://docker.xuanyuan.me"] }同时可以进入轩…...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心
当仓库学会“思考”,物流的终极形态正在诞生 想象这样的场景: 凌晨3点,某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径;AI视觉系统在0.1秒内扫描包裹信息;数字孪生平台正模拟次日峰值流量压力…...
Spring AI与Spring Modulith核心技术解析
Spring AI核心架构解析 Spring AI(https://spring.io/projects/spring-ai)作为Spring生态中的AI集成框架,其核心设计理念是通过模块化架构降低AI应用的开发复杂度。与Python生态中的LangChain/LlamaIndex等工具类似,但特别为多语…...

html-<abbr> 缩写或首字母缩略词
定义与作用 <abbr> 标签用于表示缩写或首字母缩略词,它可以帮助用户更好地理解缩写的含义,尤其是对于那些不熟悉该缩写的用户。 title 属性的内容提供了缩写的详细说明。当用户将鼠标悬停在缩写上时,会显示一个提示框。 示例&#x…...

MySQL:分区的基本使用
目录 一、什么是分区二、有什么作用三、分类四、创建分区五、删除分区 一、什么是分区 MySQL 分区(Partitioning)是一种将单张表的数据逻辑上拆分成多个物理部分的技术。这些物理部分(分区)可以独立存储、管理和优化,…...
「全栈技术解析」推客小程序系统开发:从架构设计到裂变增长的完整解决方案
在移动互联网营销竞争白热化的当下,推客小程序系统凭借其裂变传播、精准营销等特性,成为企业抢占市场的利器。本文将深度解析推客小程序系统开发的核心技术与实现路径,助力开发者打造具有市场竞争力的营销工具。 一、系统核心功能架构&…...