当前位置: 首页 > news >正文

Pytorch 反向传播 计算图被修改的报错

先看看报错的内容

RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation: [torch.FloatTensor [5, 1]], which is output 0 of AsStridedBackward0, is at version 2; expected version 1 instead. Hint: enable anomaly detection to find the operation that failed to compute its gradient, with torch.autograd.set_detect_anomaly(True).

报错中说,一个需要梯度计算的变量已经被原地修改了,这引发了报错。

torch.set_grad_enabled(True)

然后我使用上述语句开启了梯度跟踪,发现问题出在我的标签计算函数:

def get_label(net, X):return net(X).reshape((-1, 1))

为什么会出错呢?在这种情况下,由于 label 是从网络输出直接计算得到的,它与网络的计算图相连接。如果在 label 上进行了原地操作(上述的修改形状操作),就可能破坏计算图,使其不可导或其他,总之是导致反向传播时无法正确计算梯度,从而引发报错。

那怎么解决这个问题?将该结果与计算图进行分离就行了,此刻如果再进行反向传播,梯度就不会传播到此处。修改后,代码如下;

def get_label(net, X):return net(X).detach().reshape((-1, 1))

detach()函数的作用是将数据和计算图分离开来,得到数据部分,与计算图再无瓜葛。

举一个更形象的例子,看下面的代码:

label = net(X)  # 计算标签
# 对 label 或 label 的某个部分进行了原地操作,比如:
# label[0, 0] = label[0, 0] * 2
# 或
# label += 1
loss = Loss(label, y)  # 计算损失

在这个例子中,label由第一条语句前向传播得到,是直接与网络的输出连在一起,后面我却对label的值进行了手动修改。

这些操作可能导致计算图的结构不完整或不可导,从而影响反向传播的计算。为了避免这样的问题,一般建议避免在计算标签或损失时对张量进行原地操作。如果需要修改张量的值,最好创建一个新的张量,而不是直接在原有张量上进行修改。

下面是我的整个程序,大家也可以调试代码来理解其中的含义:

import torch.nn as nn
import matplotlib.pyplot as plt
import torch
from torch.utils import data
def get_label(net, X):#计算标签,计算完后必须要使用detach()分离计算图,否则代码将报计算图被修改的错误return net(X).detach().reshape((-1, 1))def train(net, trainer, Loss, train_data, train_label, epochs, batch_size):#将训练数据和标签捆在一起,便于后面一起便利data_iter = data.DataLoader(list(zip(train_data, train_label)), batch_size=batch_size)#用来存储数据的变化值,前者为训练轮次,后者为每一轮训练平均损失draw_x, draw_y = [], []for epoch in range(epochs):#每次处理一个批次的数据for X, y in data_iter:trainer.zero_grad()  # 清除梯度pre_y = net(X)  # 前向传播loss = Loss(pre_y, y)  # 计算损失loss.backward()  # 反向传播,计算梯度trainer.step()  # 更新权重,进行优化#添加绘图需要的数据draw_x.append(epoch)draw_y.append(torch.mean(Loss(net(train_data),train_label)).data)#设置绘图参数plt.figure(figsize=(5, 4), dpi=150)#设置图像大小和分辨率plt.plot(draw_x, draw_y, label='train_loss')#设置要绘制的数据,被给出图例plt.xlabel('epoch')#设置X轴标题plt.ylabel('loss')#设置y轴标题plt.legend()#显示图例#显示最终图像plt.show()def test(net, Loss, test_data, test_label):loss_sum = torch.zeros_like(test_label)data_iter = data.DataLoader(list(zip(test_data, test_label)), batch_size=batch_size, shuffle=False)for X, y in data_iter:pre_y = net(X)  # 前向传播loss = Loss(pre_y, y)  # 计算损失loss_sum += loss  # 累加损失return torch.sum(loss_sum) / len(loss_sum)  # 返回平均损失def init_weight(m):if type(m) == nn.Linear:#权重使用何凯明正态初始化方法进行初始化nn.init.kaiming_normal_(m.weight)#偏置使用0偏置nn.init.zeros_(m.bias)lr = 0.01  # 学习率
epochs = 100  # 训练轮数
batch_size = 5  # 批大小
shared = nn.Linear(5, 5)  # 共享层
net = nn.Sequential(nn.Linear(10, 5), nn.ReLU(),  # 输入层到隐藏层1的线性层,ReLU激活函数shared, nn.ReLU(),  # 共享层,ReLU激活函数shared, nn.ReLU(),  # 共享层,ReLU激活函数nn.Linear(5, 1))  # 从隐藏层到输出层的线性层,无激活函数(线性回归)#显示真实参数(我们的标签就是用这个参数跑出来的),这也是我们最终需要拟合的参数
for name, param in net.named_parameters():print(name, param)#获取随机数作为样本
X = torch.randn((200, 10))
# 通过网络得到真实标签
True_label = get_label(net, X)
#一开始自动随机生成了参数已经被我当作真实参数了,此刻我需要另重新初始化参数
net.apply(init_weight)
#获取训练器
trainer = torch.optim.SGD(net.parameters(), lr=lr)
#获取损失函数
Loss = nn.MSELoss()  # 定义损失函数,使用均方误差。#开始训练模型发
train(net, trainer, Loss, X[:50], True_label[:50], epochs, batch_size=batch_size)
#打印测试损失
print(f'测试损失{test(net, Loss, X[50:], True_label[50:])}')

相关文章:

Pytorch 反向传播 计算图被修改的报错

先看看报错的内容 RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation: [torch.FloatTensor [5, 1]], which is output 0 of AsStridedBackward0, is at version 2; expected version 1 instead. Hint: enable an…...

android studio设置gradle和gradle JDK版本

文章目录 1.gradle JDK版本2.gradle版本 1.gradle JDK版本 file -> project structure -> SDK Location -> Gradle Settings -> Gradle JDK -> Download JDK 2.gradle版本 file -> project structure -> Project...

Android 15即将到来,或将推出5大新功能特性

Android15 OneUI电池优化 三星最近完成了对其所有设备的稳定版 One UI 6.0 更新的推出,引起了用户的极大兴奋。据新出现的互联网统计数据显示,即将发布的基于 Android 15 的 One UI 7 将通过优化电池和功耗来重新定义用户体验,这是一项具有突…...

sqlalchemy 事务自动控制(类java aop)

最近使用它交互数据库,想实现类似java aop那种自动事务控制,不用手动commit或者rollback。我是用的是flaskdenpendency-injecter 这是我的db的配置类,里面会初始化一些session配置,里面比较重要的是把autocommit和autoflush关闭了…...

vue2-手写轮播图

轮播图5长展示&#xff0c;点击指示器向右移动一个图片&#xff0c;每隔2秒移动一张照片&#xff01; <template><div class"top-app"><div class"carousel-container"><div class"carousel" ref"carousel">&…...

Google I/O大会:Android 13

3个体验升级的方向 以智能手机为场景核心、 扩大智能终端的应用边界以及实现多设备间更好地协同。具体到系统体验层&#xff0c;安卓13将支持图标颜色随主题更换、为不同应用设定使用的语言、新的媒体中心界面等等&#xff0c;同时谷歌也推出了自家的钱包应用&#xff08;Goog…...

VUE指令(一)

vue会根据不同的指令&#xff0c;针对不同的标签实现不同的功能。指令是带有 v- 前缀的特殊标签属性。指令的职责是&#xff0c;当表达式的值改变时&#xff0c;将其产生的连带影响&#xff0c;响应式地作用于 DOM。 1、v-text&#xff1a;设置元素的文本内容&#xff0c;不会解…...

微信小程序开发学习笔记《7》全局配置以及小程序窗口

微信小程序开发学习笔记《7》全局配置以及小程序窗口 博主正在学习微信小程序开发&#xff0c;希望记录自己学习过程同时与广大网友共同学习讨论。全局配置官方文档 一、全局配置文件及常用的配置项 小程序根目录下的app.json 文件是小程序的全局配置文件。 常用的配置项如…...

Vue、uniApp、微信小程序、Html5等实现数缓存

此文章带你实现前端缓存&#xff0c;利用时间戳封装一个类似于Redis可以添加过期时间的缓存工具 不仅可以实现对缓存数据设置过期时间&#xff0c;还可以自定义是否需要对缓存数据进行加密处理 工具介绍说明 对缓存数据进行非对称加密处理 对必要数据进行缓存&#xff0c;并…...

如何将ArcGIS工程文件迁移到ArcGIS Pro内

当你刚接触ArcGIS Pro的时候&#xff0c;尝试新建一个工程文件会发现工程文件的后缀已经改变&#xff0c;那么以前在ArcGIS内辛苦制作的工程文件是否就不能在ArcGIS Pro内使用了&#xff0c;答案是否定的&#xff0c;对此Esri也给出了解决方案&#xff0c;这里为大家介绍一下迁…...

Jenkins基础篇--添加用户和用户权限设置

添加用户 点击系统管理&#xff0c;点击管理用户&#xff0c;然后点击创建用户&#xff08;Create User&#xff09; 用户权限管理 点击系统管理&#xff0c;点击全局安全配置&#xff0c;找到授权策略&#xff0c;选择安全矩阵&#xff0c;配置好用户权限后&#xff0c;点击…...

C语言基础内容(七)——第08章_C语言常用函数

文章目录 第08章_C语言常用函数本章专题脉络1、字符串相关函数1.1 字符串的表示方式1.2 两种方式的区别1.2 字符串常用函数strlen()strcpy()strncpy()strcat()strncat()strcmp()strlwr()/strupr()1.3 基本数据类型和字符串的转换基本数据类型 -> 字符串字符串 -> 基本数据…...

CRM系统针对销售管理有哪些功能?如何帮助销售效率增长?

从长远来看&#xff0c;有效的CRM管理系统可以帮助您的企业达到甚至超过收入目标。现代大多数企业都依靠CRM系统来管理其销售周期并增加收入。但是&#xff0c;当大多数人提到CRM时&#xff0c;他们指的是使能够改善业务关系并轻松管理不断团队的软件或工具。合格的CRM系统能够…...

基于Pixhawk和ROS搭建自主无人车(一):底盘控制篇

参考 ArduPilot Development超维空间科技乐迪MiniPix车船使用说明书 1. 硬件篇 1.1 底盘构成一览 1.2 底盘接线示意 2. 软件篇 2.1 APM 固件下载 pixhawk 是硬件平台&#xff0c;PX4 是 pixhawk 的原生固件&#xff0c;APM&#xff08;Ardupilot Mega&#xff09;是硬件平台…...

部署 Spring Boot 应用中文文档

本文为官方文档直译版本。原文链接 部署 Spring Boot 应用中文文档 引言部署到云Cloud Foundry与服务绑定 KubernetesKubernetes 容器生命周期 HerokuOpenShift亚马逊网络服务&#xff08;AWS&#xff09;AWS Elastic Beanstalk使用 Tomcat 平台使用 Java SE 平台 总结 CloudCa…...

【数据库原理】(23)实际应用中的查询优化方法

一.基于索引的优化 索引是数据库查询优化的关键工具之一。合理地使用索引可以显著提高查询速度&#xff0c;降低全表扫描的成本。以下是建立和使用索引的一些基本原则和最佳实践。 索引的建立与使用原则 数据量规模与查询频率: 值得建立索引的表通常具有较多的记录&#xff0…...

MySQL中datetime和timestamp的区别

datetime和timestamp的区别 相同点: 存储格式相同 datetime和timestamp两者的时间格式都是YYYY-MM-DD HH:MM:SS 不同点: 存储范围不同. datetime的范围是1000-01-01到9999-12-31. 而timestamp是从1970-01-01到2038-01-19, 即后者的时间范围很小. 与时区关系. datetime是存储…...

2024年如何使用WordPress构建克隆Udemy市场

您想创建像 Udemy 这样的学习管理 (LMS) 网站吗&#xff1f;最好的学习管理系统工具LifterLMS将帮助您制作像Udemy市场这样的 LMS 网站。 目录 Udemy市场是什么&#xff1f; 创建 Udemy 克隆所需的几项强制性技术&#xff1a; 步骤 1) 注册您的域名 步骤 2) 获取虚拟主…...

(leetcode)Z字形变换 -- 模拟算法

个人主页&#xff1a;Lei宝啊 愿所有美好如期而遇 题目链接 . - 力扣&#xff08;LeetCode&#xff09; 输入描述 string convert(string s, int numRows)&#xff0c;输入一个字符串s&#xff0c;以及一个行数numRows&#xff0c;将字符串按照这个行数进行Z字形排列&…...

STM32--基于STM32F103的MAX30102心率血氧测量

本文介绍基于STM32F103ZET6MAX30102心率血氧测量0.96寸OLED&#xff08;7针&#xff09;显示&#xff08;完整程序代码见文末链接&#xff09; 一、简介 MAX30102是一个集成的脉搏血氧仪和心率监测仪生物传感器的模块。它集成了一个红光LED和一个红外光LED、光电检测器、光器…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查

在对接支付宝API的时候&#xff0c;遇到了一些问题&#xff0c;记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...

golang循环变量捕获问题​​

在 Go 语言中&#xff0c;当在循环中启动协程&#xff08;goroutine&#xff09;时&#xff0c;如果在协程闭包中直接引用循环变量&#xff0c;可能会遇到一个常见的陷阱 - ​​循环变量捕获问题​​。让我详细解释一下&#xff1a; 问题背景 看这个代码片段&#xff1a; fo…...

laravel8+vue3.0+element-plus搭建方法

创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...

九天毕昇深度学习平台 | 如何安装库?

pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子&#xff1a; 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...

排序算法总结(C++)

目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指&#xff1a;同样大小的样本 **&#xff08;同样大小的数据&#xff09;**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...

push [特殊字符] present

push &#x1f19a; present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中&#xff0c;push 和 present 是两种不同的视图控制器切换方式&#xff0c;它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...

STM32---外部32.768K晶振(LSE)无法起振问题

晶振是否起振主要就检查两个1、晶振与MCU是否兼容&#xff1b;2、晶振的负载电容是否匹配 目录 一、判断晶振与MCU是否兼容 二、判断负载电容是否匹配 1. 晶振负载电容&#xff08;CL&#xff09;与匹配电容&#xff08;CL1、CL2&#xff09;的关系 2. 如何选择 CL1 和 CL…...

WebRTC从入门到实践 - 零基础教程

WebRTC从入门到实践 - 零基础教程 目录 WebRTC简介 基础概念 工作原理 开发环境搭建 基础实践 三个实战案例 常见问题解答 1. WebRTC简介 1.1 什么是WebRTC&#xff1f; WebRTC&#xff08;Web Real-Time Communication&#xff09;是一个支持网页浏览器进行实时语音…...

什么是VR全景技术

VR全景技术&#xff0c;全称为虚拟现实全景技术&#xff0c;是通过计算机图像模拟生成三维空间中的虚拟世界&#xff0c;使用户能够在该虚拟世界中进行全方位、无死角的观察和交互的技术。VR全景技术模拟人在真实空间中的视觉体验&#xff0c;结合图文、3D、音视频等多媒体元素…...

AD学习(3)

1 PCB封装元素组成及简单的PCB封装创建 封装的组成部分&#xff1a; &#xff08;1&#xff09;PCB焊盘&#xff1a;表层的铜 &#xff0c;top层的铜 &#xff08;2&#xff09;管脚序号&#xff1a;用来关联原理图中的管脚的序号&#xff0c;原理图的序号需要和PCB封装一一…...