Pytorch 反向传播 计算图被修改的报错
先看看报错的内容
RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation: [torch.FloatTensor [5, 1]], which is output 0 of AsStridedBackward0, is at version 2; expected version 1 instead. Hint: enable anomaly detection to find the operation that failed to compute its gradient, with torch.autograd.set_detect_anomaly(True).
报错中说,一个需要梯度计算的变量已经被原地修改了,这引发了报错。
torch.set_grad_enabled(True)
然后我使用上述语句开启了梯度跟踪,发现问题出在我的标签计算函数:
def get_label(net, X):return net(X).reshape((-1, 1))
为什么会出错呢?在这种情况下,由于 label
是从网络输出直接计算得到的,它与网络的计算图相连接。如果在 label
上进行了原地操作(上述的修改形状操作),就可能破坏计算图,使其不可导或其他,总之是导致反向传播时无法正确计算梯度,从而引发报错。
那怎么解决这个问题?将该结果与计算图进行分离就行了,此刻如果再进行反向传播,梯度就不会传播到此处。修改后,代码如下;
def get_label(net, X):return net(X).detach().reshape((-1, 1))
detach()函数的作用是将数据和计算图分离开来,得到数据部分,与计算图再无瓜葛。
举一个更形象的例子,看下面的代码:
label = net(X) # 计算标签
# 对 label 或 label 的某个部分进行了原地操作,比如:
# label[0, 0] = label[0, 0] * 2
# 或
# label += 1
loss = Loss(label, y) # 计算损失
在这个例子中,label由第一条语句前向传播得到,是直接与网络的输出连在一起,后面我却对label的值进行了手动修改。
这些操作可能导致计算图的结构不完整或不可导,从而影响反向传播的计算。为了避免这样的问题,一般建议避免在计算标签或损失时对张量进行原地操作。如果需要修改张量的值,最好创建一个新的张量,而不是直接在原有张量上进行修改。
下面是我的整个程序,大家也可以调试代码来理解其中的含义:
import torch.nn as nn
import matplotlib.pyplot as plt
import torch
from torch.utils import data
def get_label(net, X):#计算标签,计算完后必须要使用detach()分离计算图,否则代码将报计算图被修改的错误return net(X).detach().reshape((-1, 1))def train(net, trainer, Loss, train_data, train_label, epochs, batch_size):#将训练数据和标签捆在一起,便于后面一起便利data_iter = data.DataLoader(list(zip(train_data, train_label)), batch_size=batch_size)#用来存储数据的变化值,前者为训练轮次,后者为每一轮训练平均损失draw_x, draw_y = [], []for epoch in range(epochs):#每次处理一个批次的数据for X, y in data_iter:trainer.zero_grad() # 清除梯度pre_y = net(X) # 前向传播loss = Loss(pre_y, y) # 计算损失loss.backward() # 反向传播,计算梯度trainer.step() # 更新权重,进行优化#添加绘图需要的数据draw_x.append(epoch)draw_y.append(torch.mean(Loss(net(train_data),train_label)).data)#设置绘图参数plt.figure(figsize=(5, 4), dpi=150)#设置图像大小和分辨率plt.plot(draw_x, draw_y, label='train_loss')#设置要绘制的数据,被给出图例plt.xlabel('epoch')#设置X轴标题plt.ylabel('loss')#设置y轴标题plt.legend()#显示图例#显示最终图像plt.show()def test(net, Loss, test_data, test_label):loss_sum = torch.zeros_like(test_label)data_iter = data.DataLoader(list(zip(test_data, test_label)), batch_size=batch_size, shuffle=False)for X, y in data_iter:pre_y = net(X) # 前向传播loss = Loss(pre_y, y) # 计算损失loss_sum += loss # 累加损失return torch.sum(loss_sum) / len(loss_sum) # 返回平均损失def init_weight(m):if type(m) == nn.Linear:#权重使用何凯明正态初始化方法进行初始化nn.init.kaiming_normal_(m.weight)#偏置使用0偏置nn.init.zeros_(m.bias)lr = 0.01 # 学习率
epochs = 100 # 训练轮数
batch_size = 5 # 批大小
shared = nn.Linear(5, 5) # 共享层
net = nn.Sequential(nn.Linear(10, 5), nn.ReLU(), # 输入层到隐藏层1的线性层,ReLU激活函数shared, nn.ReLU(), # 共享层,ReLU激活函数shared, nn.ReLU(), # 共享层,ReLU激活函数nn.Linear(5, 1)) # 从隐藏层到输出层的线性层,无激活函数(线性回归)#显示真实参数(我们的标签就是用这个参数跑出来的),这也是我们最终需要拟合的参数
for name, param in net.named_parameters():print(name, param)#获取随机数作为样本
X = torch.randn((200, 10))
# 通过网络得到真实标签
True_label = get_label(net, X)
#一开始自动随机生成了参数已经被我当作真实参数了,此刻我需要另重新初始化参数
net.apply(init_weight)
#获取训练器
trainer = torch.optim.SGD(net.parameters(), lr=lr)
#获取损失函数
Loss = nn.MSELoss() # 定义损失函数,使用均方误差。#开始训练模型发
train(net, trainer, Loss, X[:50], True_label[:50], epochs, batch_size=batch_size)
#打印测试损失
print(f'测试损失{test(net, Loss, X[50:], True_label[50:])}')
相关文章:
Pytorch 反向传播 计算图被修改的报错
先看看报错的内容 RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation: [torch.FloatTensor [5, 1]], which is output 0 of AsStridedBackward0, is at version 2; expected version 1 instead. Hint: enable an…...

android studio设置gradle和gradle JDK版本
文章目录 1.gradle JDK版本2.gradle版本 1.gradle JDK版本 file -> project structure -> SDK Location -> Gradle Settings -> Gradle JDK -> Download JDK 2.gradle版本 file -> project structure -> Project...

Android 15即将到来,或将推出5大新功能特性
Android15 OneUI电池优化 三星最近完成了对其所有设备的稳定版 One UI 6.0 更新的推出,引起了用户的极大兴奋。据新出现的互联网统计数据显示,即将发布的基于 Android 15 的 One UI 7 将通过优化电池和功耗来重新定义用户体验,这是一项具有突…...
sqlalchemy 事务自动控制(类java aop)
最近使用它交互数据库,想实现类似java aop那种自动事务控制,不用手动commit或者rollback。我是用的是flaskdenpendency-injecter 这是我的db的配置类,里面会初始化一些session配置,里面比较重要的是把autocommit和autoflush关闭了…...

vue2-手写轮播图
轮播图5长展示,点击指示器向右移动一个图片,每隔2秒移动一张照片! <template><div class"top-app"><div class"carousel-container"><div class"carousel" ref"carousel">&…...

Google I/O大会:Android 13
3个体验升级的方向 以智能手机为场景核心、 扩大智能终端的应用边界以及实现多设备间更好地协同。具体到系统体验层,安卓13将支持图标颜色随主题更换、为不同应用设定使用的语言、新的媒体中心界面等等,同时谷歌也推出了自家的钱包应用(Goog…...

VUE指令(一)
vue会根据不同的指令,针对不同的标签实现不同的功能。指令是带有 v- 前缀的特殊标签属性。指令的职责是,当表达式的值改变时,将其产生的连带影响,响应式地作用于 DOM。 1、v-text:设置元素的文本内容,不会解…...

微信小程序开发学习笔记《7》全局配置以及小程序窗口
微信小程序开发学习笔记《7》全局配置以及小程序窗口 博主正在学习微信小程序开发,希望记录自己学习过程同时与广大网友共同学习讨论。全局配置官方文档 一、全局配置文件及常用的配置项 小程序根目录下的app.json 文件是小程序的全局配置文件。 常用的配置项如…...

Vue、uniApp、微信小程序、Html5等实现数缓存
此文章带你实现前端缓存,利用时间戳封装一个类似于Redis可以添加过期时间的缓存工具 不仅可以实现对缓存数据设置过期时间,还可以自定义是否需要对缓存数据进行加密处理 工具介绍说明 对缓存数据进行非对称加密处理 对必要数据进行缓存,并…...

如何将ArcGIS工程文件迁移到ArcGIS Pro内
当你刚接触ArcGIS Pro的时候,尝试新建一个工程文件会发现工程文件的后缀已经改变,那么以前在ArcGIS内辛苦制作的工程文件是否就不能在ArcGIS Pro内使用了,答案是否定的,对此Esri也给出了解决方案,这里为大家介绍一下迁…...

Jenkins基础篇--添加用户和用户权限设置
添加用户 点击系统管理,点击管理用户,然后点击创建用户(Create User) 用户权限管理 点击系统管理,点击全局安全配置,找到授权策略,选择安全矩阵,配置好用户权限后,点击…...

C语言基础内容(七)——第08章_C语言常用函数
文章目录 第08章_C语言常用函数本章专题脉络1、字符串相关函数1.1 字符串的表示方式1.2 两种方式的区别1.2 字符串常用函数strlen()strcpy()strncpy()strcat()strncat()strcmp()strlwr()/strupr()1.3 基本数据类型和字符串的转换基本数据类型 -> 字符串字符串 -> 基本数据…...

CRM系统针对销售管理有哪些功能?如何帮助销售效率增长?
从长远来看,有效的CRM管理系统可以帮助您的企业达到甚至超过收入目标。现代大多数企业都依靠CRM系统来管理其销售周期并增加收入。但是,当大多数人提到CRM时,他们指的是使能够改善业务关系并轻松管理不断团队的软件或工具。合格的CRM系统能够…...

基于Pixhawk和ROS搭建自主无人车(一):底盘控制篇
参考 ArduPilot Development超维空间科技乐迪MiniPix车船使用说明书 1. 硬件篇 1.1 底盘构成一览 1.2 底盘接线示意 2. 软件篇 2.1 APM 固件下载 pixhawk 是硬件平台,PX4 是 pixhawk 的原生固件,APM(Ardupilot Mega)是硬件平台…...
部署 Spring Boot 应用中文文档
本文为官方文档直译版本。原文链接 部署 Spring Boot 应用中文文档 引言部署到云Cloud Foundry与服务绑定 KubernetesKubernetes 容器生命周期 HerokuOpenShift亚马逊网络服务(AWS)AWS Elastic Beanstalk使用 Tomcat 平台使用 Java SE 平台 总结 CloudCa…...
【数据库原理】(23)实际应用中的查询优化方法
一.基于索引的优化 索引是数据库查询优化的关键工具之一。合理地使用索引可以显著提高查询速度,降低全表扫描的成本。以下是建立和使用索引的一些基本原则和最佳实践。 索引的建立与使用原则 数据量规模与查询频率: 值得建立索引的表通常具有较多的记录࿰…...

MySQL中datetime和timestamp的区别
datetime和timestamp的区别 相同点: 存储格式相同 datetime和timestamp两者的时间格式都是YYYY-MM-DD HH:MM:SS 不同点: 存储范围不同. datetime的范围是1000-01-01到9999-12-31. 而timestamp是从1970-01-01到2038-01-19, 即后者的时间范围很小. 与时区关系. datetime是存储…...

2024年如何使用WordPress构建克隆Udemy市场
您想创建像 Udemy 这样的学习管理 (LMS) 网站吗?最好的学习管理系统工具LifterLMS将帮助您制作像Udemy市场这样的 LMS 网站。 目录 Udemy市场是什么? 创建 Udemy 克隆所需的几项强制性技术: 步骤 1) 注册您的域名 步骤 2) 获取虚拟主…...

(leetcode)Z字形变换 -- 模拟算法
个人主页:Lei宝啊 愿所有美好如期而遇 题目链接 . - 力扣(LeetCode) 输入描述 string convert(string s, int numRows),输入一个字符串s,以及一个行数numRows,将字符串按照这个行数进行Z字形排列&…...

STM32--基于STM32F103的MAX30102心率血氧测量
本文介绍基于STM32F103ZET6MAX30102心率血氧测量0.96寸OLED(7针)显示(完整程序代码见文末链接) 一、简介 MAX30102是一个集成的脉搏血氧仪和心率监测仪生物传感器的模块。它集成了一个红光LED和一个红外光LED、光电检测器、光器…...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)
题目:3442. 奇偶频次间的最大差值 I 思路 :哈希,时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况,哈希表这里用数组即可实现。 C版本: class Solution { public:int maxDifference(string s) {int a[26]…...
椭圆曲线密码学(ECC)
一、ECC算法概述 椭圆曲线密码学(Elliptic Curve Cryptography)是基于椭圆曲线数学理论的公钥密码系统,由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA,ECC在相同安全强度下密钥更短(256位ECC ≈ 3072位RSA…...

微软PowerBI考试 PL300-选择 Power BI 模型框架【附练习数据】
微软PowerBI考试 PL300-选择 Power BI 模型框架 20 多年来,Microsoft 持续对企业商业智能 (BI) 进行大量投资。 Azure Analysis Services (AAS) 和 SQL Server Analysis Services (SSAS) 基于无数企业使用的成熟的 BI 数据建模技术。 同样的技术也是 Power BI 数据…...

2025年能源电力系统与流体力学国际会议 (EPSFD 2025)
2025年能源电力系统与流体力学国际会议(EPSFD 2025)将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会,EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...
线程同步:确保多线程程序的安全与高效!
全文目录: 开篇语前序前言第一部分:线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分:synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分ÿ…...
蓝桥杯 2024 15届国赛 A组 儿童节快乐
P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡,轻快的音乐在耳边持续回荡,小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下,六一来了。 今天是六一儿童节,小蓝老师为了让大家在节…...
基于Uniapp开发HarmonyOS 5.0旅游应用技术实践
一、技术选型背景 1.跨平台优势 Uniapp采用Vue.js框架,支持"一次开发,多端部署",可同步生成HarmonyOS、iOS、Android等多平台应用。 2.鸿蒙特性融合 HarmonyOS 5.0的分布式能力与原子化服务,为旅游应用带来…...
c++ 面试题(1)-----深度优先搜索(DFS)实现
操作系统:ubuntu22.04 IDE:Visual Studio Code 编程语言:C11 题目描述 地上有一个 m 行 n 列的方格,从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子,但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...
相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...
AI编程--插件对比分析:CodeRider、GitHub Copilot及其他
AI编程插件对比分析:CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展,AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者,分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...