Pytorch 反向传播 计算图被修改的报错
先看看报错的内容
RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation: [torch.FloatTensor [5, 1]], which is output 0 of AsStridedBackward0, is at version 2; expected version 1 instead. Hint: enable anomaly detection to find the operation that failed to compute its gradient, with torch.autograd.set_detect_anomaly(True).
报错中说,一个需要梯度计算的变量已经被原地修改了,这引发了报错。
torch.set_grad_enabled(True)
然后我使用上述语句开启了梯度跟踪,发现问题出在我的标签计算函数:
def get_label(net, X):return net(X).reshape((-1, 1))
为什么会出错呢?在这种情况下,由于 label 是从网络输出直接计算得到的,它与网络的计算图相连接。如果在 label 上进行了原地操作(上述的修改形状操作),就可能破坏计算图,使其不可导或其他,总之是导致反向传播时无法正确计算梯度,从而引发报错。
那怎么解决这个问题?将该结果与计算图进行分离就行了,此刻如果再进行反向传播,梯度就不会传播到此处。修改后,代码如下;
def get_label(net, X):return net(X).detach().reshape((-1, 1))
detach()函数的作用是将数据和计算图分离开来,得到数据部分,与计算图再无瓜葛。
举一个更形象的例子,看下面的代码:
label = net(X) # 计算标签
# 对 label 或 label 的某个部分进行了原地操作,比如:
# label[0, 0] = label[0, 0] * 2
# 或
# label += 1
loss = Loss(label, y) # 计算损失
在这个例子中,label由第一条语句前向传播得到,是直接与网络的输出连在一起,后面我却对label的值进行了手动修改。
这些操作可能导致计算图的结构不完整或不可导,从而影响反向传播的计算。为了避免这样的问题,一般建议避免在计算标签或损失时对张量进行原地操作。如果需要修改张量的值,最好创建一个新的张量,而不是直接在原有张量上进行修改。
下面是我的整个程序,大家也可以调试代码来理解其中的含义:
import torch.nn as nn
import matplotlib.pyplot as plt
import torch
from torch.utils import data
def get_label(net, X):#计算标签,计算完后必须要使用detach()分离计算图,否则代码将报计算图被修改的错误return net(X).detach().reshape((-1, 1))def train(net, trainer, Loss, train_data, train_label, epochs, batch_size):#将训练数据和标签捆在一起,便于后面一起便利data_iter = data.DataLoader(list(zip(train_data, train_label)), batch_size=batch_size)#用来存储数据的变化值,前者为训练轮次,后者为每一轮训练平均损失draw_x, draw_y = [], []for epoch in range(epochs):#每次处理一个批次的数据for X, y in data_iter:trainer.zero_grad() # 清除梯度pre_y = net(X) # 前向传播loss = Loss(pre_y, y) # 计算损失loss.backward() # 反向传播,计算梯度trainer.step() # 更新权重,进行优化#添加绘图需要的数据draw_x.append(epoch)draw_y.append(torch.mean(Loss(net(train_data),train_label)).data)#设置绘图参数plt.figure(figsize=(5, 4), dpi=150)#设置图像大小和分辨率plt.plot(draw_x, draw_y, label='train_loss')#设置要绘制的数据,被给出图例plt.xlabel('epoch')#设置X轴标题plt.ylabel('loss')#设置y轴标题plt.legend()#显示图例#显示最终图像plt.show()def test(net, Loss, test_data, test_label):loss_sum = torch.zeros_like(test_label)data_iter = data.DataLoader(list(zip(test_data, test_label)), batch_size=batch_size, shuffle=False)for X, y in data_iter:pre_y = net(X) # 前向传播loss = Loss(pre_y, y) # 计算损失loss_sum += loss # 累加损失return torch.sum(loss_sum) / len(loss_sum) # 返回平均损失def init_weight(m):if type(m) == nn.Linear:#权重使用何凯明正态初始化方法进行初始化nn.init.kaiming_normal_(m.weight)#偏置使用0偏置nn.init.zeros_(m.bias)lr = 0.01 # 学习率
epochs = 100 # 训练轮数
batch_size = 5 # 批大小
shared = nn.Linear(5, 5) # 共享层
net = nn.Sequential(nn.Linear(10, 5), nn.ReLU(), # 输入层到隐藏层1的线性层,ReLU激活函数shared, nn.ReLU(), # 共享层,ReLU激活函数shared, nn.ReLU(), # 共享层,ReLU激活函数nn.Linear(5, 1)) # 从隐藏层到输出层的线性层,无激活函数(线性回归)#显示真实参数(我们的标签就是用这个参数跑出来的),这也是我们最终需要拟合的参数
for name, param in net.named_parameters():print(name, param)#获取随机数作为样本
X = torch.randn((200, 10))
# 通过网络得到真实标签
True_label = get_label(net, X)
#一开始自动随机生成了参数已经被我当作真实参数了,此刻我需要另重新初始化参数
net.apply(init_weight)
#获取训练器
trainer = torch.optim.SGD(net.parameters(), lr=lr)
#获取损失函数
Loss = nn.MSELoss() # 定义损失函数,使用均方误差。#开始训练模型发
train(net, trainer, Loss, X[:50], True_label[:50], epochs, batch_size=batch_size)
#打印测试损失
print(f'测试损失{test(net, Loss, X[50:], True_label[50:])}')
相关文章:
Pytorch 反向传播 计算图被修改的报错
先看看报错的内容 RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation: [torch.FloatTensor [5, 1]], which is output 0 of AsStridedBackward0, is at version 2; expected version 1 instead. Hint: enable an…...
android studio设置gradle和gradle JDK版本
文章目录 1.gradle JDK版本2.gradle版本 1.gradle JDK版本 file -> project structure -> SDK Location -> Gradle Settings -> Gradle JDK -> Download JDK 2.gradle版本 file -> project structure -> Project...
Android 15即将到来,或将推出5大新功能特性
Android15 OneUI电池优化 三星最近完成了对其所有设备的稳定版 One UI 6.0 更新的推出,引起了用户的极大兴奋。据新出现的互联网统计数据显示,即将发布的基于 Android 15 的 One UI 7 将通过优化电池和功耗来重新定义用户体验,这是一项具有突…...
sqlalchemy 事务自动控制(类java aop)
最近使用它交互数据库,想实现类似java aop那种自动事务控制,不用手动commit或者rollback。我是用的是flaskdenpendency-injecter 这是我的db的配置类,里面会初始化一些session配置,里面比较重要的是把autocommit和autoflush关闭了…...
vue2-手写轮播图
轮播图5长展示,点击指示器向右移动一个图片,每隔2秒移动一张照片! <template><div class"top-app"><div class"carousel-container"><div class"carousel" ref"carousel">&…...
Google I/O大会:Android 13
3个体验升级的方向 以智能手机为场景核心、 扩大智能终端的应用边界以及实现多设备间更好地协同。具体到系统体验层,安卓13将支持图标颜色随主题更换、为不同应用设定使用的语言、新的媒体中心界面等等,同时谷歌也推出了自家的钱包应用(Goog…...
VUE指令(一)
vue会根据不同的指令,针对不同的标签实现不同的功能。指令是带有 v- 前缀的特殊标签属性。指令的职责是,当表达式的值改变时,将其产生的连带影响,响应式地作用于 DOM。 1、v-text:设置元素的文本内容,不会解…...
微信小程序开发学习笔记《7》全局配置以及小程序窗口
微信小程序开发学习笔记《7》全局配置以及小程序窗口 博主正在学习微信小程序开发,希望记录自己学习过程同时与广大网友共同学习讨论。全局配置官方文档 一、全局配置文件及常用的配置项 小程序根目录下的app.json 文件是小程序的全局配置文件。 常用的配置项如…...
Vue、uniApp、微信小程序、Html5等实现数缓存
此文章带你实现前端缓存,利用时间戳封装一个类似于Redis可以添加过期时间的缓存工具 不仅可以实现对缓存数据设置过期时间,还可以自定义是否需要对缓存数据进行加密处理 工具介绍说明 对缓存数据进行非对称加密处理 对必要数据进行缓存,并…...
如何将ArcGIS工程文件迁移到ArcGIS Pro内
当你刚接触ArcGIS Pro的时候,尝试新建一个工程文件会发现工程文件的后缀已经改变,那么以前在ArcGIS内辛苦制作的工程文件是否就不能在ArcGIS Pro内使用了,答案是否定的,对此Esri也给出了解决方案,这里为大家介绍一下迁…...
Jenkins基础篇--添加用户和用户权限设置
添加用户 点击系统管理,点击管理用户,然后点击创建用户(Create User) 用户权限管理 点击系统管理,点击全局安全配置,找到授权策略,选择安全矩阵,配置好用户权限后,点击…...
C语言基础内容(七)——第08章_C语言常用函数
文章目录 第08章_C语言常用函数本章专题脉络1、字符串相关函数1.1 字符串的表示方式1.2 两种方式的区别1.2 字符串常用函数strlen()strcpy()strncpy()strcat()strncat()strcmp()strlwr()/strupr()1.3 基本数据类型和字符串的转换基本数据类型 -> 字符串字符串 -> 基本数据…...
CRM系统针对销售管理有哪些功能?如何帮助销售效率增长?
从长远来看,有效的CRM管理系统可以帮助您的企业达到甚至超过收入目标。现代大多数企业都依靠CRM系统来管理其销售周期并增加收入。但是,当大多数人提到CRM时,他们指的是使能够改善业务关系并轻松管理不断团队的软件或工具。合格的CRM系统能够…...
基于Pixhawk和ROS搭建自主无人车(一):底盘控制篇
参考 ArduPilot Development超维空间科技乐迪MiniPix车船使用说明书 1. 硬件篇 1.1 底盘构成一览 1.2 底盘接线示意 2. 软件篇 2.1 APM 固件下载 pixhawk 是硬件平台,PX4 是 pixhawk 的原生固件,APM(Ardupilot Mega)是硬件平台…...
部署 Spring Boot 应用中文文档
本文为官方文档直译版本。原文链接 部署 Spring Boot 应用中文文档 引言部署到云Cloud Foundry与服务绑定 KubernetesKubernetes 容器生命周期 HerokuOpenShift亚马逊网络服务(AWS)AWS Elastic Beanstalk使用 Tomcat 平台使用 Java SE 平台 总结 CloudCa…...
【数据库原理】(23)实际应用中的查询优化方法
一.基于索引的优化 索引是数据库查询优化的关键工具之一。合理地使用索引可以显著提高查询速度,降低全表扫描的成本。以下是建立和使用索引的一些基本原则和最佳实践。 索引的建立与使用原则 数据量规模与查询频率: 值得建立索引的表通常具有较多的记录࿰…...
MySQL中datetime和timestamp的区别
datetime和timestamp的区别 相同点: 存储格式相同 datetime和timestamp两者的时间格式都是YYYY-MM-DD HH:MM:SS 不同点: 存储范围不同. datetime的范围是1000-01-01到9999-12-31. 而timestamp是从1970-01-01到2038-01-19, 即后者的时间范围很小. 与时区关系. datetime是存储…...
2024年如何使用WordPress构建克隆Udemy市场
您想创建像 Udemy 这样的学习管理 (LMS) 网站吗?最好的学习管理系统工具LifterLMS将帮助您制作像Udemy市场这样的 LMS 网站。 目录 Udemy市场是什么? 创建 Udemy 克隆所需的几项强制性技术: 步骤 1) 注册您的域名 步骤 2) 获取虚拟主…...
(leetcode)Z字形变换 -- 模拟算法
个人主页:Lei宝啊 愿所有美好如期而遇 题目链接 . - 力扣(LeetCode) 输入描述 string convert(string s, int numRows),输入一个字符串s,以及一个行数numRows,将字符串按照这个行数进行Z字形排列&…...
STM32--基于STM32F103的MAX30102心率血氧测量
本文介绍基于STM32F103ZET6MAX30102心率血氧测量0.96寸OLED(7针)显示(完整程序代码见文末链接) 一、简介 MAX30102是一个集成的脉搏血氧仪和心率监测仪生物传感器的模块。它集成了一个红光LED和一个红外光LED、光电检测器、光器…...
网络六边形受到攻击
大家读完觉得有帮助记得关注和点赞!!! 抽象 现代智能交通系统 (ITS) 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 (…...
ES6从入门到精通:前言
ES6简介 ES6(ECMAScript 2015)是JavaScript语言的重大更新,引入了许多新特性,包括语法糖、新数据类型、模块化支持等,显著提升了开发效率和代码可维护性。 核心知识点概览 变量声明 let 和 const 取代 var…...
逻辑回归:给不确定性划界的分类大师
想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...
ssc377d修改flash分区大小
1、flash的分区默认分配16M、 / # df -h Filesystem Size Used Available Use% Mounted on /dev/root 1.9M 1.9M 0 100% / /dev/mtdblock4 3.0M...
【第二十一章 SDIO接口(SDIO)】
第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...
【大模型RAG】Docker 一键部署 Milvus 完整攻略
本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装;只需暴露 19530(gRPC)与 9091(HTTP/WebUI)两个端口,即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...
macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用
文章目录 问题现象问题原因解决办法 问题现象 macOS启动台(Launchpad)多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显,都是Google家的办公全家桶。这些应用并不是通过独立安装的…...
SpringCloudGateway 自定义局部过滤器
场景: 将所有请求转化为同一路径请求(方便穿网配置)在请求头内标识原来路径,然后在将请求分发给不同服务 AllToOneGatewayFilterFactory import lombok.Getter; import lombok.Setter; import lombok.extern.slf4j.Slf4j; impor…...
华硕a豆14 Air香氛版,美学与科技的馨香融合
在快节奏的现代生活中,我们渴望一个能激发创想、愉悦感官的工作与生活伙伴,它不仅是冰冷的科技工具,更能触动我们内心深处的细腻情感。正是在这样的期许下,华硕a豆14 Air香氛版翩然而至,它以一种前所未有的方式&#x…...
(一)单例模式
一、前言 单例模式属于六大创建型模式,即在软件设计过程中,主要关注创建对象的结果,并不关心创建对象的过程及细节。创建型设计模式将类对象的实例化过程进行抽象化接口设计,从而隐藏了类对象的实例是如何被创建的,封装了软件系统使用的具体对象类型。 六大创建型模式包括…...
