C# OpenCvSharp DNN FreeYOLO 目标检测
目录
效果
模型信息
项目
代码
下载
C# OpenCvSharp DNN FreeYOLO 目标检测
效果

模型信息
Inputs
-------------------------
name:input
tensor:Float[1, 3, 192, 320]
---------------------------------------------------------------
Outputs
-------------------------
name:output
tensor:Float[1, 1260, 85]
---------------------------------------------------------------
项目

代码
using OpenCvSharp;
using OpenCvSharp.Dnn;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.IO;
using System.Linq;
using System.Windows.Forms;namespace OpenCvSharp_DNN_Demo
{public partial class frmMain : Form{public frmMain(){InitializeComponent();}string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";string image_path = "";DateTime dt1 = DateTime.Now;DateTime dt2 = DateTime.Now;float confThreshold;float nmsThreshold;int num_stride = 3;float[] strides = new float[3] { 8.0f, 16.0f, 32.0f };string modelpath;int inpHeight;int inpWidth;List<string> class_names;int num_class;Net opencv_net;Mat BN_image;Mat image;Mat result_image;private void button1_Click(object sender, EventArgs e){OpenFileDialog ofd = new OpenFileDialog();ofd.Filter = fileFilter;if (ofd.ShowDialog() != DialogResult.OK) return;pictureBox1.Image = null;pictureBox2.Image = null;textBox1.Text = "";image_path = ofd.FileName;pictureBox1.Image = new Bitmap(image_path);image = new Mat(image_path);}private void Form1_Load(object sender, EventArgs e){confThreshold = 0.6f;nmsThreshold = 0.5f;modelpath = "model/yolo_free_nano_192x320.onnx";inpHeight = 192;inpWidth = 320;opencv_net = CvDnn.ReadNetFromOnnx(modelpath);class_names = new List<string>();StreamReader sr = new StreamReader("model/coco.names");string line;while ((line = sr.ReadLine()) != null){class_names.Add(line);}num_class = class_names.Count();image_path = "test_img/2.jpg";pictureBox1.Image = new Bitmap(image_path);}private unsafe void button2_Click(object sender, EventArgs e){if (image_path == ""){return;}textBox1.Text = "检测中,请稍等……";pictureBox2.Image = null;Application.DoEvents();image = new Mat(image_path);float ratio = Math.Min(1.0f * inpHeight / image.Rows, 1.0f * inpWidth / image.Cols);int neww = (int)(image.Cols * ratio);int newh = (int)(image.Rows * ratio);Mat dstimg = new Mat();Cv2.Resize(image, dstimg, new OpenCvSharp.Size(neww, newh));Cv2.CopyMakeBorder(dstimg, dstimg, 0, inpHeight - newh, 0, inpWidth - neww, BorderTypes.Constant);BN_image = CvDnn.BlobFromImage(dstimg);//配置图片输入数据opencv_net.SetInput(BN_image);//模型推理,读取推理结果Mat[] outs = new Mat[1] { new Mat() };string[] outBlobNames = opencv_net.GetUnconnectedOutLayersNames().ToArray();dt1 = DateTime.Now;opencv_net.Forward(outs, outBlobNames);dt2 = DateTime.Now;int num_proposal = outs[0].Size(1);int nout = outs[0].Size(2);float* pdata = (float*)outs[0].Data;List<float> confidences = new List<float>();List<Rect> boxes = new List<Rect>();List<int> classIds = new List<int>();for (int n = 0; n < num_stride; n++){int num_grid_x = (int)Math.Ceiling(inpWidth / strides[n]);int num_grid_y = (int)Math.Ceiling(inpHeight / strides[n]);for (int i = 0; i < num_grid_y; i++){for (int j = 0; j < num_grid_x; j++){float box_score = pdata[4];int max_ind = 0;float max_class_socre = 0;for (int k = 0; k < num_class; k++){if (pdata[k + 5] > max_class_socre){max_class_socre = pdata[k + 5];max_ind = k;}}max_class_socre = max_class_socre* box_score;max_class_socre = (float)Math.Sqrt(max_class_socre);if (max_class_socre > confThreshold){float cx = (0.5f + j + pdata[0]) * strides[n]; //cxfloat cy = (0.5f + i + pdata[1]) * strides[n]; //cyfloat w = (float)(Math.Exp(pdata[2]) * strides[n]); //wfloat h = (float)(Math.Exp(pdata[3]) * strides[n]); //hfloat xmin = (float)((cx - 0.5 * w) / ratio);float ymin = (float)((cy - 0.5 * h) / ratio);float xmax = (float)((cx + 0.5 * w) / ratio);float ymax = (float)((cy + 0.5 * h) / ratio);int left = (int)((cx - 0.5 * w) / ratio);int top = (int)((cy - 0.5 * h) / ratio);int width = (int)(w / ratio);int height = (int)(h / ratio);confidences.Add(max_class_socre);boxes.Add(new Rect(left, top, width, height));classIds.Add(max_ind);}pdata += nout;}}}int[] indices;CvDnn.NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, out indices);result_image = image.Clone();for (int ii = 0; ii < indices.Length; ++ii){int idx = indices[ii];Rect box = boxes[idx];Cv2.Rectangle(result_image, new OpenCvSharp.Point(box.X, box.Y), new OpenCvSharp.Point(box.X + box.Width, box.Y + box.Height), new Scalar(0, 0, 255), 2);string label = class_names[classIds[idx]] + ":" + confidences[idx].ToString("0.00");Cv2.PutText(result_image, label, new OpenCvSharp.Point(box.X, box.Y - 5), HersheyFonts.HersheySimplex, 1, new Scalar(0, 0, 255), 2);}pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());textBox1.Text = "推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms";}private void pictureBox2_DoubleClick(object sender, EventArgs e){Common.ShowNormalImg(pictureBox2.Image);}private void pictureBox1_DoubleClick(object sender, EventArgs e){Common.ShowNormalImg(pictureBox1.Image);}}
}
下载
可执行程序exe下载
源码下载
相关文章:
C# OpenCvSharp DNN FreeYOLO 目标检测
目录 效果 模型信息 项目 代码 下载 C# OpenCvSharp DNN FreeYOLO 目标检测 效果 模型信息 Inputs ------------------------- name:input tensor:Float[1, 3, 192, 320] --------------------------------------------------------------- Outp…...
U盘启动安装win11遇到缺少计算机所需的介质驱动程序问题
一、使用U盘制作启动盘遇到问题 下载了windows原版镜像,验证了md5,确保文件没有损坏。使用ultroiso制作u盘启动盘,开始安装后出现下图的报错: 在网上搜索解决方案,主要有以下几种: 安装的时候,…...
正则表达式、文件访问(Python实现)
一、主要目的: 1.了解正则表达式的基本概念和处理过程。 2.掌握使用正则表达式模块 Re 进行字符串处理的方法。 3.了解文件的基本概念和类型。 4.掌握在 Python 中访问文本文件的方法和步骤。 5.熟悉在 Python 中访问二进制文件的方法和步骤。 二、主要内容和结…...
ES高级查询
ES中提供了一种强大的检索数据方式,这种检索方式称为Query DSL,这种方式的丰富查询语法让ES检索变得更强大,更简洁。 1.常见查询 1.1查询所有[match_all] match_all关键字:返回索引中的全部文档。 GET /products/_search { &…...
RT-Thread入门笔记6-空闲线程及两个常用的钩子函数
空闲线程 空闲线程是一个比较特殊的系统线程,它具备最低的优先级。当系统中无其他就绪线程可运行时,调度器将调度到空闲线程。 空闲线程还负责一些系统资源回收以及将一些处于关闭态的线程从线程调度列表中移除的动作 空闲线程在形式上是一个无线循环结…...
网络正常运行时间监控工具
正常运行时间是衡量系统可靠性的指标,表示为机器工作和可用时间的百分比。当提到 IT 网络时,正常运行时间是衡量网络设备、网站和其他服务的可用性的指标。网络正常运行时间通常以百分位数来衡量,例如“五个 9”,这意味着系统在 9…...
DEJA_VU3D - Cesium功能集 之 112-获取圆节点(1)
前言 编写这个专栏主要目的是对工作之中基于Cesium实现过的功能进行整合,有自己琢磨实现的,也有参考其他大神后整理实现的,初步算了算现在有差不多实现小140个左右的功能,后续也会不断的追加,所以暂时打算一周2-3更的样子来更新本专栏(每篇博文都会奉上完整demo的源代码…...
Matlab 建文件夹保存本次仿真图表数据和参数
文章目录 前言代码 前言 有时候跑的仿真参数非常多,保存结果的时候需要把仿真参数和数据一起保存,为方便起见,查了一下怎么建文件夹自动保存本次仿真图表数据和参数,再也不用担心忘记结果是什么参数跑出来的了~ 代码 % 定义变量…...
@JsonFormat与@DateTimeFormat
JsonFormat注解很好的解决了后端传给前端的格式,我们通过使用 JsonFormat可以很好的解决:后台到前台时间格式保持一致的问题 其次,另一个问题是,我们在使用WEB服务的时,可 能会需要用到,传入时间给后台&am…...
半监督学习 - 自训练(Self-training)
什么是机器学习 半监督学习中的自训练(Self-training)是一种利用已标记数据和未标记数据进行模型训练的方法。以下是自训练的详细教程: 步骤一:准备数据集 标记数据集: 收集和标记一小部分数据,用于有监…...
outlook邮件群发单显技巧?群发怎么单显?
outlook邮件群发单显如何设置?QQ邮箱怎么群发单显? 在群发邮件时,如何让每个收件人只看到自己的名字,而不是其他人的名字,这就涉及到所谓的“单显”技巧。下面蜂邮EDM就为大家揭秘Outlook邮件群发单显的奥秘。 outlo…...
【REST2SQL】07 GO 操作 Mysql 数据库
【REST2SQL】01RDB关系型数据库REST初设计 【REST2SQL】02 GO连接Oracle数据库 【REST2SQL】03 GO读取JSON文件 【REST2SQL】04 REST2SQL第一版Oracle版实现 【REST2SQL】05 GO 操作 达梦 数据库 【REST2SQL】06 GO 跨包接口重构代码 MySQL是一个关系型数据库管理系统…...
[UI5] ODATA V4中的CRUD
文章目录 前言一、Read二、Create三、Update四、Delete 前言 ODATA V4在CRUD方面与V2截然不同。 这篇文章简单介绍V4中是如何进行CRUD操作 一、Read Model不再有read方法, 一般是把Path绑定到View中进行读取, 如果需要额外的读取数据,可使用…...
js封装根据年月日获取星座效果demo(整理)
//根据年月日获取星座 function getZodiacSign(dateString) {// 用法:const dateStr 2024-01-11;// const zodiacSign getZodiacSign(dateStr);const date new Date(dateString);const month date.getMonth() 1;const day date.getDate();if ((month 1 && day &…...
Vue.js设计与实现阅读-2
Vue.js设计与实现阅读-2 1、前言2、框架设计的核心要素2、1 提升用户体验2、2 控制代码体积2、3 Tree-Shaking2、4 特性开关2、5 错误处理 1、前言 上一篇我们了解到了 命令式和声明式的区别,前者关注过程,后者关注结果了解了虚拟dom存在的意义&#x…...
GEM5 McPAT教程:源代码解读McPAT NoC功耗 arbiter部分
简介 McPAT用的很多,大多只是写个python或perl脚本替换xml文件.没有深入到为什么xml脚本这些值要换,以及这写填进去xml的值是怎么影响计算的.本问从源代码一步步读下来,解释每一步是如何计算的. power 构成: 动态功耗其实更相关于energy McPAT的power 核心是两类,动态和静态…...
使用组合框QComboBox模拟购物车
1.组合框: QComboBox 组合框:QComboBox 用于存放一些列表项 实例化 //实例化QComboBox* comboBox new QComboBox(this);1.1 代码实现 1.1.1 组合框的基本函数 QComboBox dialog.cpp #include "dialog.h" #include "ui_dialog.h"Dialog::Dialog…...
云服务器十大服务商——云服务器哪家好用
云服务器哪家便宜?2024最新整理你要的都在这!头部云厂商阿里云、腾讯云、华为云、京东云、UCloud等都在降价,阿腾云atengyun.com分享2024年云服务器租用价格给你惊喜! 便宜云服务器阿里云腾讯云华为云 2024年便宜云服务器汇总&…...
SQL DML
# DML—添加数据 1.给指定字段添加数据 INSERT INTO表名(字段名1,字段名2,...)VALUES(值1,值2...); 2.给全部字段添加数据 INSERT INTO表名VALUES(值1,值2,...); 3.批量添加数据 INSERT INTO表名(字段名1,字段名2,...)VALUES(值1,值2..…...
MySQL--基础篇
这里写目录标题 总览MySQl各个阶段基础篇总览 MySQL概述数据库相关概念查看本机MySQL版本号启停mysql打开windows服务管理windows命令行启停 连接mysql客户端mysql运行逻辑数据模型关系型数据库 总结 SQL总览SQL通用语法SQL语句分类DDL数据库操作表操作查询表创建表结构数据类型…...
Java 语言特性(面试系列2)
一、SQL 基础 1. 复杂查询 (1)连接查询(JOIN) 内连接(INNER JOIN):返回两表匹配的记录。 SELECT e.name, d.dept_name FROM employees e INNER JOIN departments d ON e.dept_id d.dept_id; 左…...
简易版抽奖活动的设计技术方案
1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...
论文解读:交大港大上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一)
宇树机器人多姿态起立控制强化学习框架论文解析 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化学习框架(一) 论文解读:交大&港大&上海AI Lab开源论文 | 宇树机器人多姿态起立控制强化…...
python报错No module named ‘tensorflow.keras‘
是由于不同版本的tensorflow下的keras所在的路径不同,结合所安装的tensorflow的目录结构修改from语句即可。 原语句: from tensorflow.keras.layers import Conv1D, MaxPooling1D, LSTM, Dense 修改后: from tensorflow.python.keras.lay…...
Docker 本地安装 mysql 数据库
Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker ;并安装。 基础操作不再赘述。 打开 macOS 终端,开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...
排序算法总结(C++)
目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指:同样大小的样本 **(同样大小的数据)**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...
android13 app的触摸问题定位分析流程
一、知识点 一般来说,触摸问题都是app层面出问题,我们可以在ViewRootImpl.java添加log的方式定位;如果是touchableRegion的计算问题,就会相对比较麻烦了,需要通过adb shell dumpsys input > input.log指令,且通过打印堆栈的方式,逐步定位问题,并找到修改方案。 问题…...
根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的----NTFS源代码分析--重要
根目录0xa0属性对应的Ntfs!_SCB中的FileObject是什么时候被建立的 第一部分: 0: kd> g Breakpoint 9 hit Ntfs!ReadIndexBuffer: f7173886 55 push ebp 0: kd> kc # 00 Ntfs!ReadIndexBuffer 01 Ntfs!FindFirstIndexEntry 02 Ntfs!NtfsUpda…...
LOOI机器人的技术实现解析:从手势识别到边缘检测
LOOI机器人作为一款创新的AI硬件产品,通过将智能手机转变为具有情感交互能力的桌面机器人,展示了前沿AI技术与传统硬件设计的完美结合。作为AI与玩具领域的专家,我将全面解析LOOI的技术实现架构,特别是其手势识别、物体识别和环境…...
Python实现简单音频数据压缩与解压算法
Python实现简单音频数据压缩与解压算法 引言 在音频数据处理中,压缩算法是降低存储成本和传输效率的关键技术。Python作为一门灵活且功能强大的编程语言,提供了丰富的库和工具来实现音频数据的压缩与解压。本文将通过一个简单的音频数据压缩与解压算法…...
