代码随想录算法训练营第17天 | 110.平衡二叉树 + 257. 二叉树的所有路径 + 404.左叶子之和
今日内容
- 110.平衡二叉树
- 257. 二叉树的所有路径
- 404.左叶子之和
110.平衡二叉树 - Easy
题目链接:. - 力扣(LeetCode)
给定一个二叉树,判断它是否是高度平衡的二叉树。
本题中,一棵高度平衡二叉树定义为:
一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1 。
思路:递归法,注意区分深度和高度
class Solution {
public:// 返回以该节点为根节点的二叉树的高度,如果不是平衡二叉树了则返回-1int getHeight(TreeNode* node) {if (node == NULL) {return 0;}int leftHeight = getHeight(node->left);if (leftHeight == -1) return -1;int rightHeight = getHeight(node->right);if (rightHeight == -1) return -1;return abs(leftHeight - rightHeight) > 1 ? -1 : 1 + max(leftHeight, rightHeight);}bool isBalanced(TreeNode* root) {return getHeight(root) == -1 ? false : true;}
};

257. 二叉树的所有路径 - Easy
题目链接:力扣-257. 二叉树的所有路径
给你一个二叉树的根节点
root,按 任意顺序 ,返回所有从根节点到叶子节点的路径。叶子节点 是指没有子节点的节点。
思路:递归法,其实实现的是回溯
class Solution {
private:void traversal(TreeNode* cur, vector<int>& path, vector<string>& result) {path.push_back(cur->val); // 中,中为什么写在这里,因为最后一个节点也要加入到path中 // 这才到了叶子节点if (cur->left == NULL && cur->right == NULL) {string sPath;for (int i = 0; i < path.size() - 1; i++) {sPath += to_string(path[i]);sPath += "->";}sPath += to_string(path[path.size() - 1]);result.push_back(sPath);return;}if (cur->left) { // 左 traversal(cur->left, path, result);path.pop_back(); // 回溯}if (cur->right) { // 右traversal(cur->right, path, result);path.pop_back(); // 回溯}}public:vector<string> binaryTreePaths(TreeNode* root) {vector<string> result;vector<int> path;if (root == NULL) return result;traversal(root, path, result);return result;}
};

404.左叶子之和 - Easy
题目链接:力扣-404. 左叶子之和
给定二叉树的根节点
root,返回所有左叶子之和。
思路:递归法
class Solution {
public:int sumOfLeftLeaves(TreeNode* root) {if (root == NULL) return 0;if (root->left == NULL && root->right== NULL) return 0;int leftValue = sumOfLeftLeaves(root->left); // 左if (root->left && !root->left->left && !root->left->right) { // 左子树就是一个左叶子的情况leftValue = root->left->val;}int rightValue = sumOfLeftLeaves(root->right); // 右int sum = leftValue + rightValue; // 中return sum;}
};

今日总结
第一题注意区分高度和深度,第二题回溯搞得不是很明白
相关文章:
代码随想录算法训练营第17天 | 110.平衡二叉树 + 257. 二叉树的所有路径 + 404.左叶子之和
今日内容 110.平衡二叉树 257. 二叉树的所有路径 404.左叶子之和 110.平衡二叉树 - Easy 题目链接:. - 力扣(LeetCode) 给定一个二叉树,判断它是否是高度平衡的二叉树。 本题中,一棵高度平衡二叉树定义为࿱…...
ubuntu20.04网络问题以及解决方案
1.网络图标消失,wired消失,ens33消失 参考:https://blog.51cto.com/u_204222/2465609 https://blog.csdn.net/qq_42265170/article/details/123640669 原始是在虚拟机中切换网络连接方式(桥接和NAT), 解决…...
Java面试题(java高级面试题)
线程池的核心线程数设置为多大比较合理? Worker线程在执行的过程中,有一部计算时间需要占用CPU,另一部分等待时间不需要占用CPU,通过量化分析,例如打日志进行统计,可以统计出整个Worker线程执行过程中这两…...
【MIdjourney】关于图像中人物视角的关键词
本篇仅是我个人在使用过程中的一些经验之谈,不代表一定是对的,如有任何问题欢迎在评论区指正,如有补充也欢迎在评论区留言。 1.全景镜头(panorama) 全景镜头是一种广角镜头,可以捕捉到比普通镜头更广阔的视野范围。全景镜头&…...
433. 最小基因变化(Queue使用ArrayList和LinkedList进行声明)
这道题可以看成一个24叉树。 因为基因序列长度固定为8,且每个位置的字母固定是AGCT,可以选择改变的只有3个字母,所以一次最多24种情况。 然后检查变化后的结果是否存在bank中(使用hashSet来存储),同时设置…...
MYSQL双主节点–更换ip
MYSQL双主节点–更换ip 一、更换双主节点ip 1.停止mysql服务 #安装了supervisor supervisorctl stop mysql #未安装 systemctl stop mysqld2.修改网卡配置信息 注:ens33是网卡名称,可能网卡不叫ens33 vi /etc/sysconfig/network-scripts/ifcfg-ens333…...
一文玩转Go语言中的面向对象编程~
温故而知新:什么是面向对象 面向对象(Object-Oriented)是一种计算机编程的方法和思想,它将程序中的数据(对象)和操作(方法)组织成一个个相互关联和交互的对象。对象是现实世界中的事…...
kylin集群反向代理(健康检查)
前面一篇文章提到了使用nginx来对kylin集群进行反向代理, kylin集群使用nginx反向代理-CSDN博客文章浏览阅读349次,点赞8次,收藏9次。由于是同一个集群的,元数据没有变化,所以,直接将原本的kylin使用scp的…...
【docker】centos7安装harbor
目录 零、前提一、下载离线包二、安装三、访问四、开机自启 零、前提 1.前提是已经安装了docker和docker-compose 一、下载离线包 1. csdn资源:harbor-offline-installer-v2.10.0.tgz 2. 百度云盘(提取码:ap3t):harbo…...
2024 年 1 月安全更新修补了 58 个漏洞(Android )
谷歌发布了针对 Android 平台 58 个漏洞的补丁,并修复了 Pixel 设备中的 3 个安全漏洞,拉开了 2024 年的序幕。 Android 2024 年 1 月更新的第一部分以 2024 年 1 月 1 日安全补丁级别发布在设备上,解决了框架和系统组件中的 10 个安全漏洞&…...
数据库系统概念 第七版 中文答案 第3章 SQL介绍
3.1 将以下查询使用SQL语言编写,使用大学数据库模式。 (我们建议您实际在数据库上运行这些查询,使用我们在书籍网站db-book.com上提供的示例数据。有关设置数据库和加载示例数据的说明,请参阅上述网站。) a. 查找计算机…...
什么是数通技术?以太网交换机在数通技术中的精要
什么是数通技术? 数通技术是指数字通信技术,它涵盖了数字信号处理、数据传输、网络通信等领域。通信工程师在数通技术中负责设计、建设和维护数字通信系统,以实现可靠、高效的信息传输。这涉及到数字信号的编解码、调制解调、数据压缩、网络…...
php 的数学常用函数
目录 1.常用列表 2.代码示例 1.常用列表 函数名描述输入输出abs()求绝对值数字绝对值数字ceil()进一法取整浮点数进一取整floor()舍去法求整浮点数直接舍去小数部分fmod()浮点数取余 两个浮点 数,x>y 浮点余数 pow()返回数的n次方基础数n次方乘方值round()浮点数四舍五入…...
Netty-Netty组件了解
EventLoop 和 EventLoopGroup 回想一下我们在 NIO 中是如何处理我们关心的事件的?在一个 while 循环中 select 出事 件,然后依次处理每种事件。我们可以把它称为事件循环,这就是 EventLoop 。 interface io.netty.channel. EventLoo…...
银行的压力测试如何进行?
为什么要进行压力风险测试? 压力风险测试的最终目的是测试银行在极度恶劣的市场环境中是否有足够的资本维持运转。 题主链接中的一级资本充足率(Tier 1 capital ratio) 亦即衡量标准,这个数字越大,表明银行资本约充裕,可以在停止…...
QtService、托盘程序使用
1、QtService 使用QtService实现Qt后台服务程序 用QT创建一个Windows Service以及踩到的若干坑 2、托盘程序 Qt之程序最小化托盘显示及操作 Qt系统托盘程序的实现...
使用Linux防火墙管理HTTP流量
在Linux系统中,防火墙是用于控制网络流量的重要工具。通过防火墙,你可以根据需要限制、过滤或允许特定的网络流量,从而提高系统的安全性。在处理HTTP流量时,防火墙可以帮助你实施访问控制、流量监控和其他安全策略。 iptables i…...
图鸟引入多套字体图标的方式教程
https://www.yuque.com/tuniao/qunyou/tgfvpg ①上传icon,生成iconfont.css 将css文件放这里 app.vue全局引入 适当改造iconfont.css的写法,方便调用...
在openEuler环境下快速编译GreatSQL RPM包
在上一篇中,已经介绍了在CentOS环境下编译GreatSQL RPM包的过程,本文再介绍如何在openEuler环境下编译GreatSQL RPM包。 运行环境是docker中的openEuler 22.03 x86_64: $ docker -v Docker version 20.10.10, build b485636$ docker run -itd…...
C语言基础语法跟练 day3
31、不使用累计乘法的基础上,通过移位运算(<<)实现2的n次方的计算。 #include <stdio.h> int main() {int i 0;scanf("%d",&i);printf("%d",1<<i);return 0; } 32、问题:一年约有 3.…...
TDengine 快速体验(Docker 镜像方式)
简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...
【Linux】shell脚本忽略错误继续执行
在 shell 脚本中,可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行,可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令,并忽略错误 rm somefile…...
利用ngx_stream_return_module构建简易 TCP/UDP 响应网关
一、模块概述 ngx_stream_return_module 提供了一个极简的指令: return <value>;在收到客户端连接后,立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量(如 $time_iso8601、$remote_addr 等)&a…...
阿里云ACP云计算备考笔记 (5)——弹性伸缩
目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...
蓝桥杯 2024 15届国赛 A组 儿童节快乐
P10576 [蓝桥杯 2024 国 A] 儿童节快乐 题目描述 五彩斑斓的气球在蓝天下悠然飘荡,轻快的音乐在耳边持续回荡,小朋友们手牵着手一同畅快欢笑。在这样一片安乐祥和的氛围下,六一来了。 今天是六一儿童节,小蓝老师为了让大家在节…...
Java多线程实现之Callable接口深度解析
Java多线程实现之Callable接口深度解析 一、Callable接口概述1.1 接口定义1.2 与Runnable接口的对比1.3 Future接口与FutureTask类 二、Callable接口的基本使用方法2.1 传统方式实现Callable接口2.2 使用Lambda表达式简化Callable实现2.3 使用FutureTask类执行Callable任务 三、…...
从零实现STL哈希容器:unordered_map/unordered_set封装详解
本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说,直接开始吧! 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...
鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序
一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...
全志A40i android7.1 调试信息打印串口由uart0改为uart3
一,概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本:2014.07; Kernel版本:Linux-3.10; 二,Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01),并让boo…...
Maven 概述、安装、配置、仓库、私服详解
目录 1、Maven 概述 1.1 Maven 的定义 1.2 Maven 解决的问题 1.3 Maven 的核心特性与优势 2、Maven 安装 2.1 下载 Maven 2.2 安装配置 Maven 2.3 测试安装 2.4 修改 Maven 本地仓库的默认路径 3、Maven 配置 3.1 配置本地仓库 3.2 配置 JDK 3.3 IDEA 配置本地 Ma…...
