强化学习应用(三):基于Q-learning的无人机物流路径规划研究(提供Python代码)
一、Q-learning简介
Q-learning是一种强化学习算法,用于解决基于马尔可夫决策过程(MDP)的问题。它通过学习一个价值函数来指导智能体在环境中做出决策,以最大化累积奖励。
Q-learning算法的核心思想是通过不断更新一个称为Q值的表格来学习最优策略。Q值表示在给定状态下采取某个动作所能获得的预期累积奖励。算法的基本步骤如下:
1. 初始化Q值表格,将所有Q值初始化为0。
2. 在每个时间步骤t,智能体观察当前状态st,并根据当前Q值表格选择一个动作at。选择动作的方法可以是ε-greedy策略,即以ε的概率随机选择一个动作,以1-ε的概率选择当前Q值最大的动作。
3. 执行动作at,观察环境反馈的奖励rt+1和下一个状态st+1。
4. 根据Q-learning更新规则更新Q值表格中的Q值:
Q(st, at) = Q(st, at) + α * (rt+1 + γ * max(Q(st+1, a)) - Q(st, at))
其中,α是学习率,γ是折扣因子,用于平衡当前奖励和未来奖励的重要性。
5. 重复步骤2-4,直到达到停止条件(例如达到最大迭代次数或Q值收敛)。
Q-learning算法的目标是通过不断更新Q值表格,使得智能体能够在环境中找到最优策略,以最大化累积奖励。
二、无人机物流路径规划
无人机物流路径规划是指利用无人机进行货物运输时,通过算法和技术使其无人机将所有货物运送到指定位置,并返回起点,并得到最优飞行路径,以实现高效、安全和准确的货物运输。无人机物流路径规划可以简单抽象为旅行商问题(Traveling Salesman Problem, TSP)。TSP是一个经典的组合优化问题,它的目标是找到一条路径,使得旅行商从起点出发,经过所有城市恰好一次,最后回到起点,并且总路径长度最短。解决TSP问题的方法有很多,其中一种常用的方法是蚁群算法。除了蚁群算法,还有其他一些常用的解决TSP问题的方法,如遗传算法、动态规划和强化学习等。强化学习求解TSP问题思路新颖,具有一定优势。
三、Q-learning求解无人机物流路径规划
1、部分代码
可以自动生成地图也可导入自定义地图,只需要修改如下代码中chos的值即可。
import matplotlib.pyplot as plt
from Qlearning import Qlearning
#Chos: 1 随机初始化地图; 0 导入固定地图
chos=1
node_num=36 #当选择随机初始化地图时,自动随机生成node_num-1个城市
# 创建对象,初始化节点坐标,计算每两点距离
qlearn = Qlearning(alpha=0.5, gamma=0.01, epsilon=0.5, final_epsilon=0.05,chos=chos,node_num=node_num)
# 训练Q表、打印路线
iter_num=1000#训练次数
Curve,BestRoute,Qtable,Map=qlearn.Train_Qtable(iter_num=iter_num)
#Curve 训练曲线
#BestRoute 最优路径
#Qtable Qlearning求解得到的在最优路径下的Q表
#Map TSP的城市节点坐标## 画图
plt.figure()
plt.ylabel("distance")
plt.xlabel("iter")
plt.plot(Curve, color='red')
plt.title("Q-Learning")
plt.savefig('curve.png')
plt.show()
2、部分结果
(1)以国际通用的TSP实例库TSPLIB中的测试集bayg29为例:


Qlearning算法得到的最短路线: [1, 28, 6, 12, 9, 3, 29, 26, 5, 21, 2, 20, 10, 4, 15, 18, 14, 22, 17, 11, 19, 25, 7, 23, 27, 8, 24, 16, 13, 1]
(2)随机生成25个城市


Qlearning算法得到的最短路线: [1, 8, 11, 20, 10, 22, 23, 17, 9, 6, 24, 2, 3, 18, 19, 7, 4, 5, 13, 12, 16, 14, 21, 25, 15, 1]
(3)随机生成22个城市


Qlearning算法得到的最短路线: [1, 10, 14, 13, 22, 9, 21, 4, 19, 20, 5, 7, 3, 12, 18, 6, 17, 8, 11, 2, 15, 16, 1]
四、完整Python代码
相关文章:
强化学习应用(三):基于Q-learning的无人机物流路径规划研究(提供Python代码)
一、Q-learning简介 Q-learning是一种强化学习算法,用于解决基于马尔可夫决策过程(MDP)的问题。它通过学习一个价值函数来指导智能体在环境中做出决策,以最大化累积奖励。 Q-learning算法的核心思想是通过不断更新一个称为Q值的…...
探索SQL性能优化之道:实用技巧与最佳实践
SQL性能优化可能是每个数据库管理员和开发者在日常工作中必不可少的一个环节。在大数据时代,为确保数据库系统的响应速度和稳定性,掌握一些实用的SQL优化技巧至关重要。 本文将带着开发人员走进SQL性能优化的世界,深入剖析实用技巧和最佳实践…...
Github项目推荐-Insomnia
项目地址 GitHub地址:GitHub - Kong/insomnia 官网:The Collaborative API Development Platform - Insomnia 项目简述 想必大家都知道PostMan吧。Insomnia可以说是PostMan的开源平替。页面ui很不错,功能强大,使用也比较方便。…...
python 语法
闭包 在函数嵌套的前提下,内部函数使用了外部函数的变量,并且外部函数返回了内部函数,我们把这个使用外部函数变量的内部函数称为闭包。 def outfunc(arg):def innerFunc(msg):print(f"<{msg}> {arg} <{msg}>")retu…...
Mac下载Navicat premium提示文件损坏的解决方案
引用:https://blog.csdn.net/weixin_44898291/article/details/120879508 sudo xattr -r -d com.apple.quarantine...
算法——贪心法(Greedy)
贪心法 把整个问题分解成多个步骤,在每个步骤都选取当前步骤的最优方案,直到所有步骤结束;在每一步都不考虑对后续步骤的影响,在后续步骤中也不再回头改变前面的选择。不足之处: 贪心算法并不能保证获得全局最优解&…...
VmWare虚拟机的安装
VmWare官方最新版下载地址 vmware官方下载地址 安装流程 安装成功验证 安装完成之后,打开网络中心,一定要确认这里多出两个网络连接,才证明Vmware已经安装成功...
Vue.js轻量级框架:快速搭建可扩展的管理系统
一、前言 在项目实战开发中,尤其是大平台系统的搭建,针对不同业务场景,需要为用户多次编写用于录入、修改、展示操作的相应表单页面。一旦表单需求过多,对于开发人员来说,算是一种重复开发,甚至是繁杂的工作…...
Android-多线程
线程是进程中可独立执行的最小单位,也是 CPU 资源(时间片)分配的基本单位,同一个进程中的线程可以共享进程中的资源,如内存空间和文件句柄。线程有一些基本的属性,如id、name、以及priority。 id࿱…...
sqlalchemy 监听所有实体插入以及更新事件
这边使用的是flaskdependency-injectersqlalchemy,有一个公共类,想插入或者更新的时候对公共类某些字段进行统一操作 这个是公共类:包括一些基础字段,所有的实体都会继承这个类 """Models module.""&q…...
go怎么结束很多个协程呢
在Go语言中,可以通过使用context来结束多个协程。context包提供了用于跟踪、取消和传递截止日期的机制,可用于协程的生命周期管理。 以下是一个使用context取消多个协程的示例: package mainimport ("context""fmt"&qu…...
springboot 项目访问静态资源遇到的问题,WebMvcConfigurer和WebMvcConfigurationSupport
之前发过通过继承WebMvcConfigurationSupport来访问静态资源的文章——img标签访问静态资源,代码如下 Configuration public class LocalPathWebMvcConfigurer extends WebMvcConfigurationSupport {/*** 在springboot项目中,允许浏览器访问指定本地文件…...
Nginx配置负载均衡实例
Nginx配置反向代理实例二 提醒一下:下面实例讲解是在Mac系统演示的; 负载均衡实例实现的效果 浏览器地址栏输入地址http://192.168.0.101/test/a.html,刷新页面进行多次请求,负载均衡效果,平均分配到8080端口服务和8…...
【算法题】50. Pow(x, n)
题目 实现 pow(x, n) ,即计算 x 的整数 n 次幂函数(即,xn )。 示例 1: 输入:x 2.00000, n 10 输出:1024.00000 示例 2: 输入:x 2.10000, n 3 输出:9.…...
K8S动态PV
pv和pvc存储卷 存储卷: emptyDir容器内部,随着pod销毁,emptyDir也会消失,不能做数据持久化 hostPath:持久化存储数据,可以和节点上目录做挂载。pod被销毁了数据还在 NFS:一台机器࿰…...
逆变器2(原理框图)
总流程 输入(低压直流24Vdc)——升压(DC—DC)(高压直流369Vdc) ——逆变(DC—AC)(交流220V) 升压电路:BOOST电路、LLC电路、推挽电路 逆变器过程…...
ERA5合集,使用ERA5得到GNSS站点的温度,气压,水汽压,Tm和PWV合集,可以求五个参数
0. 码字不易,点赞加关注(公众号:WZZHHH,部分资料在公众号可以下载),使用请注明出处(根据我的研究方向,我会不断更新代码)。 1.计算PWV的方法一般采用有三种, …...
c#让三个线程按照顺序执行
现实的例子 三个线程都是while(true)的循环体 A线程:采集数据 B线程:画曲线 C线程:存数据库 AutoResetEvent类 AutoResetEvent 是一个线程同步的类,它提供了一种机制,允许一个或多个线程等待直…...
AWS Directory Service 开启ldaps
启用客户端 LDAPS 要启用客户端 LDAPS,您需要将证书颁发机构(CA)证书导入 AWS Managed Microsoft AD,然后在目录上启用 LDAPS。启用后,AWS 应用程序与您自行管理的 Active Directory 之间的所有 LDAP 通信将通过安全套…...
Seata 以 Nacos 为注册中心启动
Seata 以 Nacos 为注册中心启动 修改 conf 下的 application.yml 配置 server:port: 7091spring:application:name: seata-serverlogging:config: classpath:logback-spring.xmlfile:path: ${user.home}/logs/seataextend:logstash-appender:destination: 127.0.0.1:4560kafk…...
在软件开发中正确使用MySQL日期时间类型的深度解析
在日常软件开发场景中,时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志,到供应链系统的物流节点时间戳,时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库,其日期时间类型的…...
生成xcframework
打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式,可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...
idea大量爆红问题解决
问题描述 在学习和工作中,idea是程序员不可缺少的一个工具,但是突然在有些时候就会出现大量爆红的问题,发现无法跳转,无论是关机重启或者是替换root都无法解决 就是如上所展示的问题,但是程序依然可以启动。 问题解决…...
DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径
目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...
基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真
目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销,平衡网络负载,延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...
C++:std::is_convertible
C++标志库中提供is_convertible,可以测试一种类型是否可以转换为另一只类型: template <class From, class To> struct is_convertible; 使用举例: #include <iostream> #include <string>using namespace std;struct A { }; struct B : A { };int main…...
Nuxt.js 中的路由配置详解
Nuxt.js 通过其内置的路由系统简化了应用的路由配置,使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...
现代密码学 | 椭圆曲线密码学—附py代码
Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南
精益数据分析(97/126):邮件营销与用户参与度的关键指标优化指南 在数字化营销时代,邮件列表效度、用户参与度和网站性能等指标往往决定着创业公司的增长成败。今天,我们将深入解析邮件打开率、网站可用性、页面参与时…...
Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决
Spring Cloud Gateway 中自定义验证码接口返回 404 的排查与解决 问题背景 在一个基于 Spring Cloud Gateway WebFlux 构建的微服务项目中,新增了一个本地验证码接口 /code,使用函数式路由(RouterFunction)和 Hutool 的 Circle…...
