当前位置: 首页 > news >正文

【CCNet】《CCNet:Criss-Cross Attention for Semantic Segmentation》

在这里插入图片描述

ICCV-2019


文章目录

  • 1 Background and Motivation
  • 2 Related Work
  • 3 Advantages / Contributions
  • 4 Method
  • 5 Experiments
    • 5.1 Datasets and Metrics
    • 5.2 Experiments on Cityscapess
    • 5.3 Experiments on ADE20K
    • 5.4 Experiments on COCO
  • 6 Conclusion(own)


1 Background and Motivation

分割任务中全局的上下文信息非常重要,如果高效轻量的获取上下文?

Thus, is there an alternative solution to achieve such a target in a more efficient way?

作者提出了 Criss-Cross Attention

相比于 Non-local(【NL】《Non-local Neural Networks》)

复杂度从 O((HxW)x(HxW)) 降低到了 O((HxW)x(H+W-1))

2 Related Work

  • semantic segmentation
  • contextual information aggregation
  • Attention model

3 Advantages / Contributions

  • 提出 Criss-Cross 注意力,capture contextual information from full-image dependencies in a more efficient and effective way
  • 在语义分割数据集 Cityscapes, ADE20K 和实例分割数据 COCO 上均有提升

4 Method

整理流程如下
在这里插入图片描述

Criss-Cross Attention Module 用了两次,叫 recurrent Criss-Cross attention (RCCA) module

下面是和 non-local 的对比
在这里插入图片描述
比如(b)中,计算蓝色块的 attention,绿色块不同深浅表示与蓝色块的相关程度,第一次结合十字架attention得到黄色块,第二次再结合十字架attention,得到红色块

为什么两次,因为一次捕获不到全局上下文信息,两次就可以,如下图

在这里插入图片描述

第一次,计算深绿色块的 Criss-Cross 注意力,只能获取到浅绿色块的信息,蓝色块的信息获取不到,浅绿色可以获取到蓝色块信息
第二次,计算深绿色块的 Criss-Cross 注意力,因为第一次计算浅绿色块注意力时已经有蓝色块信息了,此时,可以获取到蓝色块信息

更细节的 Criss-Cross 注意力图如下
在这里插入图片描述

下面结合图 3 看看公式表达

输入 H ∈ R C × W × H H \in \mathbb{R}^{C \times W \times H} HRC×W×H

query 和 key, { Q , K } ∈ R C ′ × W × H \{Q, K\} \in \mathbb{R}^{{C}' \times W \times H} {Q,K}RC×W×H C ′ {C}' C 为 1/8 C C C

Q u ∈ R C ′ Q_u \in \mathbb{R}^{{C}'} QuRC u u u H × W H \times W H×W 中空间位置索引,特征图 Q 的子集(每个空间位置)

Ω u ∈ R ( H + W − 1 ) × C ′ \Omega_{u} \in \mathbb{R}^{(H + W -1) \times {C}' } ΩuR(H+W1)×C,特征图 K 的子集(每个十字架)

Affinity operation 可以定义为

d i , u = Q u Ω i , u T d_{i,u} = Q_u \Omega_{i, u}^T di,u=QuΩi,uT

Q Q Q上每个空间位置 Q u Q_u Qu,找到 K K K 上对应的同行同列十字架 Ω u \Omega_{u} Ωu i i i 是十字架中空间位置的索引, d i , u ∈ D d_{i,u} \in {D} di,uD D ∈ R ( H + W − 1 ) × W × H D \in \mathbb{R}^{(H+W-1) \times W \times H} DR(H+W1)×W×H Q Q Q K K K 计算的 D D D 经过 softmax 后成 A ∈ R ( H + W − 1 ) × W × H A \in \mathbb{R}^{(H + W -1) \times W \times H} AR(H+W1)×W×H

Q Q Q K K K 计算出来了权重 A A A 最终作用到 K K K 上,形式如下:

H u ′ = ∑ i ∈ ∣ Φ u ∣ A i , u Φ i , u + H u {H}_u^{'} = \sum_{i \in | \Phi_u|} A_{i,u}\Phi_{i,u} + H_u Hu=iΦuAi,uΦi,u+Hu

Φ i , u \Phi_{i,u} Φi,u Ω i , u \Omega_{i, u} Ωi,u,一个是特征图 V V V 的子集,一个是特征图 K K K 的子集, H H H 是输入, H ′ {H}^{'} H 为输出, i i i 是十字架索引, u u u H H H x W W W 空间位置索引

为了使每一个位置 u u u 可以与任何位置对应起来,作者通过两次计算 Criss-cross 来完成,只需对 H ′ {H}^{'} H 再次计算 criss-cross attention,输出 H ′ ′ {H}^{''} H′′,此时就有:

u u u and θ \theta θ in the same row or column
在这里插入图片描述
A A A 表示 loop = 1 时的注意力 weight, A ′ {A}' A 表示 loop = 2 时的 weight

u u u and θ \theta θ not in the same row or column,eg 图 4,深绿色位置是 u u u,蓝色的位置是 θ \theta θ
在这里插入图片描述

在这里插入图片描述
加上
在这里插入图片描述

再看看代码

import torch
import torch.nn as nn
import torch.nn.functional as Fdef INF(B,H,W):return -torch.diag(torch.tensor(float("inf")).cuda().repeat(H),0).unsqueeze(0).repeat(B*W,1,1)class CrissCrossAttention(nn.Module):def __init__(self, in_channels):super(CrissCrossAttention, self).__init__()self.in_channels = in_channelsself.channels = in_channels // 8self.ConvQuery = nn.Conv2d(self.in_channels, self.channels, kernel_size=1)self.ConvKey = nn.Conv2d(self.in_channels, self.channels, kernel_size=1)self.ConvValue = nn.Conv2d(self.in_channels, self.in_channels, kernel_size=1)self.SoftMax = nn.Softmax(dim=3)self.INF = INFself.gamma = nn.Parameter(torch.zeros(1))def forward(self, x):b, _, h, w = x.size()# [b, c', h, w]query = self.ConvQuery(x)# [b, w, c', h] -> [b*w, c', h] -> [b*w, h, c']query_H = query.permute(0, 3, 1, 2).contiguous().view(b*w, -1, h).permute(0, 2, 1)# [b, h, c', w] -> [b*h, c', w] -> [b*h, w, c']query_W = query.permute(0, 2, 1, 3).contiguous().view(b*h, -1, w).permute(0, 2, 1)# [b, c', h, w]key = self.ConvKey(x)# [b, w, c', h] -> [b*w, c', h]key_H = key.permute(0, 3, 1, 2).contiguous().view(b*w, -1, h)# [b, h, c', w] -> [b*h, c', w]key_W = key.permute(0, 2, 1, 3).contiguous().view(b*h, -1, w)# [b, c, h, w]value = self.ConvValue(x)# [b, w, c, h] -> [b*w, c, h]value_H = value.permute(0, 3, 1, 2).contiguous().view(b*w, -1, h)# [b, h, c, w] -> [b*h, c, w]value_W = value.permute(0, 2, 1, 3).contiguous().view(b*h, -1, w)# [b*w, h, c']* [b*w, c', h] -> [b*w, h, h] -> [b, h, w, h]energy_H = (torch.bmm(query_H, key_H) + self.INF(b, h, w)).view(b, w, h, h).permute(0, 2, 1, 3)# [b*h, w, c']*[b*h, c', w] -> [b*h, w, w] -> [b, h, w, w]energy_W = torch.bmm(query_W, key_W).view(b, h, w, w)# [b, h, w, h+w]  concate channels in axis=3 concate = self.SoftMax(torch.cat([energy_H, energy_W], 3))# [b, h, w, h] -> [b, w, h, h] -> [b*w, h, h]attention_H = concate[:,:,:, 0:h].permute(0, 2, 1, 3).contiguous().view(b*w, h, h)attention_W = concate[:,:,:, h:h+w].contiguous().view(b*h, w, w)# [b*w, h, c]*[b*w, h, h] -> [b, w, c, h]out_H = torch.bmm(value_H, attention_H.permute(0, 2, 1)).view(b, w, -1, h).permute(0, 2, 3, 1)out_W = torch.bmm(value_W, attention_W.permute(0, 2, 1)).view(b, h, -1, w).permute(0, 2, 1, 3)return self.gamma*(out_H + out_W) + xif __name__ == "__main__":model = CrissCrossAttention(512)x = torch.randn(2, 512, 28, 28)model.cuda()out = model(x.cuda())print(out.shape)

Q,K,A,V 还是比较直接

参考

  • CCNet–于"阡陌交通"处超越恺明Non-local

  • 语义分割系列20-CCNet(pytorch实现)

5 Experiments

5.1 Datasets and Metrics

  • Cityscapes
  • ADE20K
  • COCO

Mean IoU (mIOU, mean of class-wise intersection over union section over union) for Cityscapes and ADE20K and the standard COCO metrics Average Precision (AP) for COCO

5.2 Experiments on Cityscapess

(1)Comparisons with state-of-the-arts
在这里插入图片描述
DPC 用了更强的主干,更多的数据集来 train

在这里插入图片描述

(2)Ablation studies

在这里插入图片描述
消融了下循环的次数,还是很猛的,第一次就提升了 2.9 个点,第二次又提升了 1.8 个

看看效果图,重点看作者圈出来的白色虚线椭圆区域
在这里插入图片描述

对比看看其他的 context aggregation 模块
在这里插入图片描述
作者的 Criss-Cross Attention 比较猛

其次比较猛的是 Non-local,但是作者的计算量小很多

在这里插入图片描述
看看特征图,重点看作者圈出来的绿色十字加号区域
在这里插入图片描述

5.3 Experiments on ADE20K

在这里插入图片描述

5.4 Experiments on COCO

在这里插入图片描述

6 Conclusion(own)

《Large Kernel Matters Improve Semantic Segmentation by Global Convolutional Network》

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

相关文章:

【CCNet】《CCNet:Criss-Cross Attention for Semantic Segmentation》

ICCV-2019 文章目录 1 Background and Motivation2 Related Work3 Advantages / Contributions4 Method5 Experiments5.1 Datasets and Metrics5.2 Experiments on Cityscapess5.3 Experiments on ADE20K5.4 Experiments on COCO 6 Conclusion(own) 1 Ba…...

Qt QSQlite数据库插入字符串中存在单个双引号或单个单引号解决方案

1. 前言 当进行数据库写入或更新时,有时会遇到存在字符串中包含单个双引号或者单引号。 2. 单引号和双引号""作用 在数据库中,字符串常量时需要用一对英文单引号或英文双引号""将字符串常量括起来。 比如: select * …...

Linux系统中的IP地址、主机名、和域名解析

1.IP地址 每一台联网的电脑都会有一个地址,用于和其它计算机进行通讯 IP地址主要有2个版本,V4版本和V6版本(V6很少用,暂不涉及) IPv4版本的地址格式是:a.b.c.d,其中abcd表示0~255的数字&…...

soc算法【周末总结】

1 实验一(SOC误差30%放电实验) 1.1 实验过程 1、对电池包进行充电,将昨天放空的电池包进行充电,充电至SOC40%左右; 2、电池包SOC为38%时,手动修改SOC值为70%,开始放电 3、SOC由70%缓慢降至4…...

SpringBoot之优化高并发场景下的HttpClient并提升QPS

HttpClient优化思路 使用连接池(简单粗暴) 长连接优化(特殊业务场景) httpclient和httpget复用 合理的配置参数(最大并发请求数,各种超时时间,重试次数) 异步请求优化&#xff0…...

go-zero 如何在任意地方获取yaml中的值

1、config配置文件中新增全局变量 package configimport "github.com/zeromicro/go-zero/rest"type Config struct {rest.RestConfDB struct {DataSource string}Redis struct {Addr stringPassWord stringUserName string}Auth struct {AccessSecret stringAcc…...

C++20结构化绑定应用实例(二百五十六)

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 人生格言: 人生…...

改进YOLOv8注意力系列四:结合中心化特征金字塔EVCBlock、大核卷积注意力LKA_Attention、全局注意力MobileViTAttention

改进YOLOv8注意力系列三:结合CrissCrossAttention、ECAAttention、EMAU期望最大化注意力 代码大核卷积注意力LKA_Attention中心化特征金字塔EVCBlock全局注意力MobileViTAttention加入方法各种yaml加入结构本文提供了改进 YOLOv8注意力系列包含不同的注意力机制以及多种加入方…...

idea中使用Lombok 失效,@Slf4j 找不到符号的解决办法

文章目录 一、前言二、问题排查和解决方案三、 其他解决方案3.1 另一种解决方案3.2 参考文章 一、前言 今天在一个多module工程中,新增了一个 springboot(版本 2.2.4.RELEASE) module,像往常一样,我引入了lombok依赖&…...

MySQL修炼手册8:约束与完整性:保证数据的一致性

目录 写在开头1 主键与唯一键约束1.1 PRIMARY KEY约束的作用1.2 主键的复合使用1.3 主键的修改与删除1.4 UNIQUE约束的应用场景1.5 主键与唯一键约束的性能影响1.6 主键的自动增长1.7 主键的最佳实践1.8 独特性与业务需求1.9 避免过度使用唯一约束1.10 主键与唯一键的关系 2 外…...

React入门 - 03(初识 React 组件和 JSX)

本章内容 目录 1.初识 React 组件2.关于 JSX 继上一节的工程案例,我们这一节主要了解一下 React组件和 “JSX 语法”。 前置知识点:ES6模块化&继承 1.初识 React 组件 1、打开 src/index.js文件(项目的入口文件)内容&…...

华为OD机试 - 反射计数(Java JS Python C)

题目描述 给定一个包含 0 和 1 的二维矩阵。 给定一个初始位置和速度,一个物体从给定的初始位置出发,在给定的速度下进行移动,遇到矩阵的边缘则发生镜面发射。 无论物体经过 0 还是 1,都不影响其速度。 请计算并给出经过 t 时间单位后,物体经过 1 点的次数。 矩阵以左…...

Linux系统中使用systemctl命令控制软件的启动和关闭

Linux系统很多软件(内置或第三方)均支持使用systemctl命令控制:启动、停止、开机自启 能够被systemctl管理的软件,一般也称之为:服务 1.功能和语法 功能:控制系统服务的启动关闭等 语法:syst…...

2024年01月微软更新Bug 已解决 !Explorer.EXE 提示:Windows无法访问指定设备、路径或文件。你可能没有适当的权限访问该项目。

前倾概要 近期大量出现如上图问题,杀毒,系统急救箱都没反应,罪魁祸首就是微软更新! 点击什么都是:Windows无法访问指定设备、路径或文件。你可能没有适当的权限访问该项目。 但软件使用正常,还能通过建立…...

Qt/QML编程学习之心得:slider(34)

滑条slider,有时也成为进度条progressbar,在GUI界面中也是经常用到的。 import QtQuick 2.9 import QtQuick.Controls 2.0 import QtQuick.Layouts 1.2ApplicationWindow {id:rootvisible: truewidth: 1920height: 720//title: qsTr("Hello World&q…...

使用metricbeat 监控多ES集群

背景 ES 本身自带 监控,属于xpack 中的内容,为商业版,需要收费; 并且 monitor 功能必须要在security开启后才能使用,还有就是集群监控自己,将采集到的性能数据保存到本集群,这是一个比较差的设…...

阿里云服务器+宝塔 (尝试部署一个最简单的静态页面)

1. 免费白嫖一个阿里服务器 进入网址:服务器购买地址 选择预装宝塔面板 购买完成后前往控制台 查看当前实例 设置或修改密码 设置用户名和密码 2. 远程连接到服务器 2.1. 使用Workbench连接 输入用户名和密码连接成功页面如下: 2.2. 使…...

每日一题——LeetCode1160.拼写单词

方法一 个人方法: 先统计chars里每个字符出现的次数,再对words里每个字符串统计每个字符出现的字符,当: 1、字符串里出现chars里没有的字符 2、字符串里某个字符出现的次数大于该字符在chars里出现的次数 以上两种情况则不符合…...

物联网协议Coap之Core和NetWork简介

目录 前言 一、Coap的Core包 1、Coap对象 2、Message对象 3、Request对象 4、Response对象 二、Coap的NetWork调试 1、UDP运行模式 2、Network消息接收 3、Sender线程发送数据 三、总结 前言 在之前的博文中,对Californium中Coap的实现进行了简要的介绍&a…...

Java SE入门及基础(10)

switch选择结构 1. 概念 switch 表示开关的意思,为了帮助理解,下面以线路为例,进行解释说明 上图中表示一条带有多个开关的线路,当开关打开时,该开关所控制的灯即被点亮。 2. 语法规则 switch ( 表达式 ){ //…...

KubeSphere 容器平台高可用:环境搭建与可视化操作指南

Linux_k8s篇 欢迎来到Linux的世界,看笔记好好学多敲多打,每个人都是大神! 题目:KubeSphere 容器平台高可用:环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

地震勘探——干扰波识别、井中地震时距曲线特点

目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波:可以用来解决所提出的地质任务的波;干扰波:所有妨碍辨认、追踪有效波的其他波。 地震勘探中,有效波和干扰波是相对的。例如,在反射波…...

利用ngx_stream_return_module构建简易 TCP/UDP 响应网关

一、模块概述 ngx_stream_return_module 提供了一个极简的指令&#xff1a; return <value>;在收到客户端连接后&#xff0c;立即将 <value> 写回并关闭连接。<value> 支持内嵌文本和内置变量&#xff08;如 $time_iso8601、$remote_addr 等&#xff09;&a…...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点&#xff0c;但无自动故障转移能力&#xff0c;Master宕机后需人工切换&#xff0c;期间消息可能无法读取。Slave仅存储数据&#xff0c;无法主动升级为Master响应请求&#xff…...

微信小程序云开发平台MySQL的连接方式

注&#xff1a;微信小程序云开发平台指的是腾讯云开发 先给结论&#xff1a;微信小程序云开发平台的MySQL&#xff0c;无法通过获取数据库连接信息的方式进行连接&#xff0c;连接只能通过云开发的SDK连接&#xff0c;具体要参考官方文档&#xff1a; 为什么&#xff1f; 因为…...

JDK 17 新特性

#JDK 17 新特性 /**************** 文本块 *****************/ python/scala中早就支持&#xff0c;不稀奇 String json “”" { “name”: “Java”, “version”: 17 } “”"; /**************** Switch 语句 -> 表达式 *****************/ 挺好的&#xff…...

AI,如何重构理解、匹配与决策?

AI 时代&#xff0c;我们如何理解消费&#xff1f; 作者&#xff5c;王彬 封面&#xff5c;Unplash 人们通过信息理解世界。 曾几何时&#xff0c;PC 与移动互联网重塑了人们的购物路径&#xff1a;信息变得唾手可得&#xff0c;商品决策变得高度依赖内容。 但 AI 时代的来…...

LINUX 69 FTP 客服管理系统 man 5 /etc/vsftpd/vsftpd.conf

FTP 客服管理系统 实现kefu123登录&#xff0c;不允许匿名访问&#xff0c;kefu只能访问/data/kefu目录&#xff0c;不能查看其他目录 创建账号密码 useradd kefu echo 123|passwd -stdin kefu [rootcode caozx26420]# echo 123|passwd --stdin kefu 更改用户 kefu 的密码…...

LLMs 系列实操科普(1)

写在前面&#xff1a; 本期内容我们继续 Andrej Karpathy 的《How I use LLMs》讲座内容&#xff0c;原视频时长 ~130 分钟&#xff0c;以实操演示主流的一些 LLMs 的使用&#xff0c;由于涉及到实操&#xff0c;实际上并不适合以文字整理&#xff0c;但还是决定尽量整理一份笔…...

搭建DNS域名解析服务器(正向解析资源文件)

正向解析资源文件 1&#xff09;准备工作 服务端及客户端都关闭安全软件 [rootlocalhost ~]# systemctl stop firewalld [rootlocalhost ~]# setenforce 0 2&#xff09;服务端安装软件&#xff1a;bind 1.配置yum源 [rootlocalhost ~]# cat /etc/yum.repos.d/base.repo [Base…...