当前位置: 首页 > news >正文

大数据框架之Hadoop:MapReduce(五)Yarn资源调度器

Apache YARN (Yet Another Resource Negotiator) 是 hadoop 2.0 引入的集群资源管理系统。用户可以将各种服务框架部署在 YARN 上,由 YARN 进行统一地管理和资源分配。

简言之,Yarn是一个资源调度平台,负责为运算程序提供服务器运算资源,相当于一个分布式的操作系统平台,而MapReduce等运算程序则相当于运行于操作系统之上的应用程序。

Untitled

5.1Yarn基本架构

YARN主要由ResourceManagerNodeManagerApplicationMasterContainer等组件构成,如下图所示。

Untitled

Untitled

1. ResourceManager

ResourceManager 通常在独立的机器上以后台进程的形式运行,它是整个集群资源的主要协调者和管理者。ResourceManager 负责给用户提交的所有应用程序分配资源,它根据应用程序优先级、队列容量、ACLs、数据位置等信息,做出决策,然后以共享的、安全的、多租户的方式制定分配策略,调度集群资源。

2. NodeManager

NodeManager 是 YARN 集群中的每个具体节点的管理者。主要负责该节点内所有容器的生命周期的管理,监视资源和跟踪节点健康。具体如下:

  • 启动时向 ResourceManager 注册并定时发送心跳消息,等待 ResourceManager 的指令;
  • 维护 Container 的生命周期,监控 Container 的资源使用情况;
  • 管理任务运行时的相关依赖,根据 ApplicationMaster 的需要,在启动 Container 之前将需要的程序及其依赖拷贝到本地。

3. ApplicationMaster

在用户提交一个应用程序时,YARN 会启动一个轻量级的进程 ApplicationMasterApplicationMaster 负责协调来自 ResourceManager 的资源,并通过 NodeManager 监视容器内资源的使用情况,同时还负责任务的监控与容错。具体如下:

  • 根据应用的运行状态来决定动态计算资源需求;
  • ResourceManager 申请资源,监控申请的资源的使用情况;
  • 跟踪任务状态和进度,报告资源的使用情况和应用的进度信息;
  • 负责任务的容错。

4. Container

Container 是 YARN 中的资源抽象,它封装了某个节点上的多维度资源,如内存、CPU、磁盘、网络等。当 AM 向 RM 申请资源时,RM 为 AM 返回的资源是用 Container 表示的。YARN 会为每个任务分配一个 Container,该任务只能使用该 Container 中描述的资源。ApplicationMaster 可在 Container 内运行任何类型的任务。例如,MapReduce ApplicationMaster 请求一个容器来启动 map 或 reduce 任务,而 Giraph ApplicationMaster 请求一个容器来运行 Giraph 任务。

5.2Yarn工作机制

2.1 工作原理简述

Untitled

  1. Client 提交作业到 YARN 上;
  2. Resource Manager 选择一个 Node Manager,启动一个 Container 并运行 Application Master 实例;
  3. Application Master 根据实际需要向 Resource Manager 请求更多的 Container 资源(如果作业很小, 应用管理器会选择在其自己的 JVM 中运行任务);
  4. Application Master 通过获取到的 Container 资源执行分布式计算。

2.2 工作原理详述

Untitled

1. 作业提交

client 调用 job.waitForCompletion 方法,向整个集群提交 MapReduce 作业 (第 1 步) 。新的作业 ID(应用 ID) 由资源管理器分配 (第 2 步)。作业的 client 核实作业的输出, 计算输入的 split, 将作业的资源 (包括 Jar 包,配置文件, split 信息) 拷贝给 HDFS(第 3 步)。 最后, 通过调用资源管理器的 submitApplication() 来提交作业 (第 4 步)。

2. 作业初始化

当资源管理器收到 submitApplciation() 的请求时, 就将该请求发给调度器 (scheduler), 调度器分配 container, 然后资源管理器在该 container 内启动应用管理器进程, 由节点管理器监控 (第 5 步)。

MapReduce 作业的应用管理器是一个主类为 MRAppMaster 的 Java 应用,其通过创造一些 bookkeeping 对象来监控作业的进度, 得到任务的进度和完成报告 (第 6 步)。然后其通过分布式文件系统得到由客户端计算好的输入 split(第 7 步),然后为每个输入 split 创建一个 map 任务, 根据 mapreduce.job.reduces 创建 reduce 任务对象。

3. 任务分配

如果作业很小, 应用管理器会选择在其自己的 JVM 中运行任务。

如果不是小作业, 那么应用管理器向资源管理器请求 container 来运行所有的 map 和 reduce 任务 (第 8 步)。这些请求是通过心跳来传输的, 包括每个 map 任务的数据位置,比如存放输入 split 的主机名和机架 (rack),调度器利用这些信息来调度任务,尽量将任务分配给存储数据的节点, 或者分配给和存放输入 split 的节点相同机架的节点。

4. 任务运行

当一个任务由资源管理器的调度器分配给一个 container 后,应用管理器通过联系节点管理器来启动 container(第 9 步)。任务由一个主类为 YarnChild 的 Java 应用执行, 在运行任务之前首先本地化任务需要的资源,比如作业配置,JAR 文件, 以及分布式缓存的所有文件 (第 10 步。 最后, 运行 map 或 reduce 任务 (第 11 步)。

YarnChild 运行在一个专用的 JVM 中, 但是 YARN 不支持 JVM 重用。

5. 进度和状态更新

YARN 中的任务将其进度和状态 (包括 counter) 返回给应用管理器, 客户端每秒 (通 mapreduce.client.progressmonitor.pollinterval 设置) 向应用管理器请求进度更新, 展示给用户。

6. 作业完成

除了向应用管理器请求作业进度外, 客户端每 5 分钟都会通过调用 waitForCompletion() 来检查作业是否完成,时间间隔可以通过 mapreduce.client.completion.pollinterval 来设置。作业完成之后, 应用管理器和 container 会清理工作状态, OutputCommiter 的作业清理方法也会被调用。作业的信息会被作业历史服务器存储以备之后用户核查。

三、作业提交全过程

3.1 主要流程

1、Yarn运行机制

如下图所示。

Untitled

2、工作机制详解

(1)MR程序提交到客户端所在的节点。

(2)YarnRunner向ResourceManager申请一个Application。

(3)RM将该应用程序的资源路径返回给YarnRunner。

(4)该程序将运行所需资源提交到HDFS上。

(5)程序资源提交完毕后,申请运行mrAppMaster。

(6)RM将用户的请求初始化成一个Task。

(7)其中一个NodeManager领取到Task任务。

(8)该NodeManager创建容器Container,并产生MRAppmaster。

(9)Container从HDFS上拷贝资源到本地。

(10)MRAppmaster向RM 申请运行MapTask资源。

(11)RM将运行MapTask任务分配给另外两个NodeManager,另两个NodeManager分别领取任务并创建容器。

(12)MR向两个接收到任务的NodeManager发送程序启动脚本,这两个NodeManager分别启动MapTask,MapTask对数据分区排序。

(13)MrAppMaster等待所有MapTask运行完毕后,向RM申请容器,运行ReduceTask。

(14)ReduceTask向MapTask获取相应分区的数据。

(15)程序运行完毕后,MR会向RM申请注销自己。

3.2 详细过程

1、作业提交过程之YARN

如下图所示。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-vHzsFWNT-1677842175783)(5Yarn%E8%B5%84%E6%BA%90%E8%B0%83%E5%BA%A6%E5%99%A8%2052c4bf3665e64b858624bae9765fda4e/Untitled%206.png)]

作业提交全过程详解

(1)作业提交

第1步:Client调用job.waitForCompletion()方法,向整个集群提交MapReduce作业。

第2步:Client向RM申请一个作业id。

第3步:RM向Client返回该job资源的提交路径和作业id。

第4步:Client核实作业的输出, 计算输入的 split,提交jar包、切片信息和配置文件到指定的资源提交路径(HDFS)。

第5步:Client提交完资源后,通过调用资源管理器的 submitApplication()向RM提交作业。

(2)作业初始化

第6步:当RM收到ClientsubmitApplciation() 的请求后,将该job添加到容量调度器中。

第7步:调度器分配某一个空闲的NM执行此Job。

第8步:NM创建Container,并启动MRAppmaster。

第9步:下载Client提交的资源到本地。

(3)任务分配

第10步:MrAppMaster向RM申请运行多个MapTask任务资源。

第11步:RM将运行MapTask任务分配给另外两个NodeManager,另两个NodeManager分别领取任务并创建容器。

(4)任务运行

第12步:MR向两个接收到任务的NodeManager发送程序启动脚本,这两个NodeManager分别启动MapTask,MapTask对数据分区排序。

第13步:MrAppMaster等待所有MapTask运行完毕后,向RM申请容器,运行ReduceTask。

第14步:ReduceTask向MapTask获取相应分区的数据。

第15步:程序运行完毕后,MR会向RM申请注销自己。

(5)进度和状态更新

YARN中的任务将其进度和状态(包括counter)返回给应用管理器, 客户端每秒(通过mapreduce.client.progressmonitor.pollinterval设置)向应用管理器请求进度更新, 展示给用户。

(6)作业完成

除了向应用管理器请求作业进度外, 客户端每5秒都会通过调用waitForCompletion()来检查作业是否完成。时间间隔可以通过mapreduce.client.completion.pollinterval来设置。作业完成之后, 应用管理器和Container会清理工作状态。作业的信息会被作业历史服务器存储以备之后用户核查。

2、作业提交过程之MapReduce

如下图所示

Untitled

四、资源调度器

目前,Hadoop作业调度器主要有三种:FIFOCapacity SchedulerFair Scheduler。Hadoop2.7.2默认的资源调度器是Capacity Scheduler

具体设置详见:yarn-default.xml文件

<property><description>The class to use as the resource scheduler.</description><name>yarn.resourcemanager.scheduler.class</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.scheduler.capacity.CapacityScheduler</value>
</property>

1、先进先出调度器(FIFO),如图所示

Untitled

2、容量调度器(Capacity Scheduler),如图所示,系统默认为容量调度器。

Untitled

3、公平调度器(Fair Scheduler),如图所示

Untitled

五、任务的推测执行

1、作业完成时间取决于最慢的任务完成时间

一个作业由若干个Map任务和Reduce任务构成。因硬件老化、软件Bug等,某些任务可能运行非常慢。

思考:系统中有99%的Map任务都完成了,只有少数几个Map老是进度很慢,完不成,怎么办?

2、推测执行机制

发现拖后腿的任务,比如某个任务运行速度远慢于任务平均速度。为拖后腿任务启动一个备份任务,同时运行。谁先运行完,则采用谁的结果。

3、执行推测任务的前提条件

(1)每个Task只能有一个备份任务

(2)当前Job已完成的Task必须不小于0.05(5%)

(3)开启推测执行参数设置。mapred-site.xml文件中默认是打开的。

<property><name>mapreduce.map.speculative</name><value>true</value><description>If true, then multiple instances of some map tasks may be executed in parallel.</description>
</property><property><name>mapreduce.reduce.speculative</name><value>true</value><description>If true, then multiple instances of some reduce tasks may be executed in parallel.</description>
</property>

4、不能启用推测执行机制情况

(1)任务间存在严重的负载倾斜;

(2)特殊任务,比如任务向数据库中写数据。

5、算法原理,如图4-20所示

Untitled

相关文章:

大数据框架之Hadoop:MapReduce(五)Yarn资源调度器

Apache YARN (Yet Another Resource Negotiator) 是 hadoop 2.0 引入的集群资源管理系统。用户可以将各种服务框架部署在 YARN 上&#xff0c;由 YARN 进行统一地管理和资源分配。 简言之&#xff0c;Yarn是一个资源调度平台&#xff0c;负责为运算程序提供服务器运算资源&…...

uniapp实现地图点聚合功能

前言 在工作中接到的一个任务&#xff0c;在app端实现如下功能&#xff1a; 地图点聚合地图页面支持tab切换&#xff08;设备、劳务、人员&#xff09;支持人员搜索显示分布 但是uniapp原有的map标签不支持点聚合功能&#xff08;最新的版本支持了点聚合功能&#xff09;&am…...

经典分类模型回顾2—GoogleNet实现图像分类(matlab版)

GoogleNet是深度学习领域的一种经典的卷积神经网络&#xff0c;其在ImageNet图像分类任务上的表现十分优秀。下面是使用Matlab实现GoogleNet的图像分类示例。 1. 数据准备 在开始之前&#xff0c;需要准备一些图像数据用来训练和测试模型&#xff0c;可以从ImageNet等数据集中…...

Java经典面试题——谈谈 final、finally、finalize 有什么不同?

典型回答 final 可以用来修饰类、方法、变量&#xff0c;分别有不同的意义&#xff0c;final 修饰的 class 代表不可以继承扩展&#xff0c; final 的变量是不可以修改的&#xff0c;而 final 的方法也是不可以重写的&#xff08;override&#xff09;。 finally 则是 Java 保…...

C#的Version类型值与SQL Server中二进制binary类型转换

使用C#语言编写的应用程序可以通过.NET Framework框架提供的Version类来控制每次发布的版本号&#xff0c;以便更好控制每次版本更新迭代。 版本号由两到四个组件组成&#xff1a;主要、次要、内部版本和修订。 版本号的格式如下所示&#xff0c; 可选组件显示在方括号 ([ 和…...

软测入门(五)接口测试Postman

Postman 一款Http接口收工测试工具。如果做自动化测试会使用jemter做。 安装 去官网下载即可。 https://www.postman.com/downloads/?utm_sourcepostman-home 功能介绍 页面上的单词基本上都能了解&#xff0c;不多介绍。 转代码&注释 可将接口的访问转为其他语言的…...

UWB通道选择、信号阻挡和反射对UWB定位范围和定位精度的影响

&#xff08;一&#xff09;介绍检查NLOS操作时需要考虑三个方面&#xff1a;&#xff08;1&#xff09;由于整体信号衰减&#xff0c;通信范围减小。&#xff08;2&#xff09;由于直接路径信号的衰减&#xff0c;导致直接路径检测范围的减小。&#xff08;3&#xff09;由于阻…...

linux基本功之列之wget命令实战

文章目录前言一. wget命令介绍二. 语法格式及常用选项三. 参考案例3.1 下载单个文件3.2 使用wget -o 下载文件并改名3.3 -c 参数&#xff0c;下载断开链接时&#xff0c;可以恢复下载3.4 wget后台下载3.5 使用wget下载整个网站四. 补充与汇总常见用法总结前言 大家好&#xff…...

学习ROS时针对gazebo相关的问题(重装与卸载是永远的神)

ResourceNotFound:gazebo_ros 错误解决 参考:https://blog.csdn.net/weixin_42591529/article/details/123869969 当将机器人加载到gazebo时,运行launch文件出现如下错误 这是由于缺少gazebo包所导致的。 解决办法:...

几个C语言容易忽略的问题

1 取模符号自增问题 我们不妨尝试写这样的程序 #include<stdio.h> int main(){int n,t5;printf("%d\n",7%(-3));//1printf("%d\n",(-7)%3);//-1while(--t)printf("%d\n",t);t5;while(t--)printf("%d\n",t);return 0; } 运行…...

CentOS 7.9安装Zabbix 4.4《保姆级教程》

CentOS 7.9安装Zabbix 4.4一、配置一览二、环境准备设置Selinux和firewalld设置软件源1.配置ustc CentOS-Base源2.安装zabbix 4.4官方源3.安装并更换epel源4.清除并生成缓存三、安装并配置Zabbix Server安装zabbix组件安装php安装mariadb并创建数据库修改zabbix_server.conf设置…...

路由器与交换机的区别(基础知识)

文章目录交换机路由器路由器和交换机的区别&#xff08;1&#xff09;工作层次不同&#xff08;2&#xff09;数据转发所依据的对象不同&#xff08;3&#xff09;传统的交换机只能分割冲突域&#xff0c;不能分割广播域&#xff1b;而路由器可以分割广播域&#xff08;4&#…...

Python基础学习9——函数

基本概念 函数是一种能够完成某项任务的封装工具。在数学中&#xff0c;函数是自变量到因变量的一种映射&#xff0c;通过某种方式能够使自变量的值变成因变量的值。其实本质上也是实现了某种值的转换的任务。 函数的定义 在python中&#xff0c;函数是利用def来进行定义&am…...

项目中的MD5、盐值加密

首先介绍一下MD5&#xff0c;而项目中用的是MD5和盐值来确保密码的安全性&#xff1b; 1. md5简介 md5的全称是md5信息摘要算法&#xff08;英文&#xff1a;MD5 Message-Digest Algorithm &#xff09;&#xff0c;一种被广泛使用的密码散列函数&#xff0c;可以产生一个128位…...

电商项目后端框架SpringBoot、MybatisPlus

后端框架基础 1.代码自动生成工具 mybatis-plus &#xff08;1&#xff09;首先需要添加依赖文件 <dependency><groupId>com.alibaba</groupId><artifactId>druid</artifactId><version>1.2.2</version></dependency><de…...

2023年03月IDE流行度最新排名

点击查看最新IDE流行度最新排名&#xff08;每月更新&#xff09; 2023年03月IDE流行度最新排名 顶级IDE排名是通过分析在谷歌上搜索IDE下载页面的频率而创建的 一个IDE被搜索的次数越多&#xff0c;这个IDE就被认为越受欢迎。原始数据来自谷歌Trends 如果您相信集体智慧&am…...

华为校招机试 - 数组取最小值(Java JS Python)

目录 题目描述 输入描述 输出描述 用例 题目解析 JavaScript算法源码 Java算法源码...

20 客户端服务订阅的事件机制剖析

Nacos客户端服务订阅的事件机制剖析 我们已经分析了Nacos客户端订阅的核心流程&#xff1a;Nacos客户端通过一个定时任务&#xff0c;每6秒从注册中心获取实例列表&#xff0c;当发现实例发生变化时&#xff0c;发布变更事件&#xff0c;订阅者进行业务处理&#xff0c;然后更…...

ThreadPoolExecutor中的addWorker方法

在看线程池源码的时候看到了这么一段代码 private boolean addWorker(Runnable firstTask, boolean core) {retry:for (int c ctl.get();;) {// Check if queue empty only if necessary.if (xxx)return false;for (;;) {if (xxx)return false;if (xxx)break retry;if (xxx)c…...

9 有线网络的封装

概述 IPC设备一般都带有网口,支持以有线网络方式接入NVR和其他平台。有线网络的使用比较简单,主要操作有:设置IP地址、子网掩码、网关、DHCP等。在封装有线网络前,我们需要先封装DHCP客户端管理类,用于管理各种网络的DHCP功能。 DHCP客户端管理类 DHCP客户端管理类的头文件…...

树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频

使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源&#xff1a; http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...

VB.net复制Ntag213卡写入UID

本示例使用的发卡器&#xff1a;https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...

Zustand 状态管理库:极简而强大的解决方案

Zustand 是一个轻量级、快速和可扩展的状态管理库&#xff0c;特别适合 React 应用。它以简洁的 API 和高效的性能解决了 Redux 等状态管理方案中的繁琐问题。 核心优势对比 基本使用指南 1. 创建 Store // store.js import create from zustandconst useStore create((set)…...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施&#xff0c;由雇主和个人按一定比例缴纳保险费&#xff0c;建立社会医疗保险基金&#xff0c;支付雇员医疗费用的一种医疗保险制度&#xff0c; 它是促进社会文明和进步的…...

【AI学习】三、AI算法中的向量

在人工智能&#xff08;AI&#xff09;算法中&#xff0c;向量&#xff08;Vector&#xff09;是一种将现实世界中的数据&#xff08;如图像、文本、音频等&#xff09;转化为计算机可处理的数值型特征表示的工具。它是连接人类认知&#xff08;如语义、视觉特征&#xff09;与…...

Swagger和OpenApi的前世今生

Swagger与OpenAPI的关系演进是API标准化进程中的重要篇章&#xff0c;二者共同塑造了现代RESTful API的开发范式。 本期就扒一扒其技术演进的关键节点与核心逻辑&#xff1a; &#x1f504; 一、起源与初创期&#xff1a;Swagger的诞生&#xff08;2010-2014&#xff09; 核心…...

laravel8+vue3.0+element-plus搭建方法

创建 laravel8 项目 composer create-project --prefer-dist laravel/laravel laravel8 8.* 安装 laravel/ui composer require laravel/ui 修改 package.json 文件 "devDependencies": {"vue/compiler-sfc": "^3.0.7","axios": …...

Mobile ALOHA全身模仿学习

一、题目 Mobile ALOHA&#xff1a;通过低成本全身远程操作学习双手移动操作 传统模仿学习&#xff08;Imitation Learning&#xff09;缺点&#xff1a;聚焦与桌面操作&#xff0c;缺乏通用任务所需的移动性和灵活性 本论文优点&#xff1a;&#xff08;1&#xff09;在ALOHA…...

Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信

文章目录 Linux C语言网络编程详细入门教程&#xff1a;如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket&#xff08;服务端和客户端都要&#xff09;2. 绑定本地地址和端口&#x…...

【7色560页】职场可视化逻辑图高级数据分析PPT模版

7种色调职场工作汇报PPT&#xff0c;橙蓝、黑红、红蓝、蓝橙灰、浅蓝、浅绿、深蓝七种色调模版 【7色560页】职场可视化逻辑图高级数据分析PPT模版&#xff1a;职场可视化逻辑图分析PPT模版https://pan.quark.cn/s/78aeabbd92d1...