当前位置: 首页 > news >正文

C++力扣题目538--把二叉搜索树转换为累加树

给出二叉 搜索 树的根节点,该树的节点值各不相同,请你将其转换为累加树(Greater Sum Tree),使每个节点 node 的新值等于原树中大于或等于 node.val 的值之和。

提醒一下,二叉搜索树满足下列约束条件:

  • 节点的左子树仅包含键 小于 节点键的节点。
  • 节点的右子树仅包含键 大于 节点键的节点。
  • 左右子树也必须是二叉搜索树。

注意:本题和 1038: . - 力扣(LeetCode) 相同

示例 1:

输入:[4,1,6,0,2,5,7,null,null,null,3,null,null,null,8]
输出:[30,36,21,36,35,26,15,null,null,null,33,null,null,null,8]

示例 2:

输入:root = [0,null,1]
输出:[1,null,1]

示例 3:

输入:root = [1,0,2]
输出:[3,3,2]

示例 4:

输入:root = [3,2,4,1]
输出:[7,9,4,10]

提示:

  • 树中的节点数介于 0 和 104 之间。
  • 每个节点的值介于 -104 和 104 之间。
  • 树中的所有值 互不相同 。
  • 给定的树为二叉搜索树。

思路

一看到累加树,相信很多小伙伴都会疑惑:如何累加?遇到一个节点,然后再遍历其他节点累加?怎么一想这么麻烦呢。

然后再发现这是一棵二叉搜索树,二叉搜索树啊,这是有序的啊。

那么有序的元素如何求累加呢?

其实这就是一棵树,大家可能看起来有点别扭,换一个角度来看,这就是一个有序数组[2, 5, 13],求从后到前的累加数组,也就是[20, 18, 13],是不是感觉这就简单了。

为什么变成数组就是感觉简单了呢?

因为数组大家都知道怎么遍历啊,从后向前,挨个累加就完事了,这换成了二叉搜索树,看起来就别扭了一些是不是。

那么知道如何遍历这个二叉树,也就迎刃而解了,从树中可以看出累加的顺序是右中左,所以我们需要反中序遍历这个二叉树,然后顺序累加就可以了

#递归

遍历顺序如图所示:

538.把二叉搜索树转换为累加树

本题依然需要一个pre指针记录当前遍历节点cur的前一个节点,这样才方便做累加。

pre指针的使用技巧,我们在二叉树:搜索树的最小绝对差 (opens new window)和二叉树:我的众数是多少? (opens new window)都提到了,这是常用的操作手段。

  • 递归函数参数以及返回值

这里很明确了,不需要递归函数的返回值做什么操作了,要遍历整棵树。

同时需要定义一个全局变量pre,用来保存cur节点的前一个节点的数值,定义为int型就可以了。

代码如下:

int pre = 0; // 记录前一个节点的数值
void traversal(TreeNode* cur)

  • 确定终止条件

遇空就终止。

if (cur == NULL) return;

  • 确定单层递归的逻辑

注意要右中左来遍历二叉树, 中节点的处理逻辑就是让cur的数值加上前一个节点的数值。

代码如下:

traversal(cur->right);  // 右
cur->val += pre;        // 中
pre = cur->val;
traversal(cur->left);   // 左

递归法整体代码如下:

class Solution {
private:int pre = 0; // 记录前一个节点的数值void traversal(TreeNode* cur) { // 右中左遍历if (cur == NULL) return;traversal(cur->right);cur->val += pre;pre = cur->val;traversal(cur->left);}
public:TreeNode* convertBST(TreeNode* root) {pre = 0;traversal(root);return root;}
};

#迭代法

迭代法其实就是中序模板题了,在二叉树:前中后序迭代法 (opens new window)和二叉树:前中后序统一方式迭代法 (opens new window)可以选一种自己习惯的写法。

这里我给出其中的一种,代码如下:

class Solution {
private:int pre; // 记录前一个节点的数值void traversal(TreeNode* root) {stack<TreeNode*> st;TreeNode* cur = root;while (cur != NULL || !st.empty()) {if (cur != NULL) {st.push(cur);cur = cur->right;   // 右} else {cur = st.top();     // 中st.pop();cur->val += pre;pre = cur->val;cur = cur->left;    // 左}}}
public:TreeNode* convertBST(TreeNode* root) {pre = 0;traversal(root);return root;}
};

#总结

经历了前面各种二叉树增删改查的洗礼之后,这道题目应该比较简单了。

好了,二叉树已经接近尾声了,接下来就是要对二叉树来一个大总结了

相关文章:

C++力扣题目538--把二叉搜索树转换为累加树

给出二叉 搜索 树的根节点&#xff0c;该树的节点值各不相同&#xff0c;请你将其转换为累加树&#xff08;Greater Sum Tree&#xff09;&#xff0c;使每个节点 node 的新值等于原树中大于或等于 node.val 的值之和。 提醒一下&#xff0c;二叉搜索树满足下列约束条件&#…...

曲线生成 | 图解贝塞尔曲线生成原理(附ROS C++/Python/Matlab仿真)

目录 0 专栏介绍1 贝塞尔曲线的应用2 图解贝塞尔曲线3 贝塞尔曲线的性质4 算法仿真4.1 ROS C仿真4.2 Python仿真4.3 Matlab仿真 0 专栏介绍 &#x1f525;附C/Python/Matlab全套代码&#x1f525;课程设计、毕业设计、创新竞赛必备&#xff01;详细介绍全局规划(图搜索、采样法…...

【一万字干货】一篇给你讲清楚智慧城市——附送智慧系列开发项目合集

智慧城市的概念 智慧城市&#xff08;Smart City&#xff09;起源于传媒领域&#xff0c;是指利用各种信息技术或创新概念&#xff0c;将城市的系统和服务打通、集成&#xff0c;以提升资源运用的效率&#xff0c;优化城市管理和服务&#xff0c;以及改善市民生活质量。 中国…...

关于如何禁用、暂停或退出OneDrive等操作,看这篇文件就够了

​想知道如何禁用OneDrive?你可以暂停OneDrive的文件同步,退出应用程序,阻止它在启动时打开,或者永远从你的机器上删除该应用程序。我们将向你展示如何在Windows计算机上完成所有这些操作。 如何在Windows上关闭OneDrive 有多种方法可以防止OneDrive在你的电脑上妨碍你。…...

Vue3-46-Pinia-获取全局状态变量的方式

使用说明 在 Pinia 中&#xff0c;获取状态变量的方式非常的简单 &#xff1a; 就和使用对象一样。 使用思路 &#xff1a; 1、导入Store&#xff1b;2、声明Store对象&#xff1b;3、使用对象。 在逻辑代码中使用 但是 Option Store 和 Setup Store 两种方式定义的全局状态变量…...

数据库——DAY1(Linux上安装MySQL8.0.35(网络仓库安装))

一、环境部署 1、Red Hat Enterprise Linux 9.3 64 位 2、删除之前安装过本地镜像版本的MySQL软件&#xff08;以前未安装过&#xff0c;请跳过此步骤&#xff09; [rootlocalhost ~]# dnf remove mysql-server -y [rootlocalhost ~]# rm -rf /var/lib/mysql [rootlocalhost …...

原生微信小程序-两次设置支付密码校验,密码设置二次确认

效果 具体代码 1、wxml <view style"{{themeColor}}"><view classcontainer><view class"password_content"><view wx:if{{type 1}}><view class"title"><view class"main_title">设置支付密码…...

【Python学习】Python学习15-模块

目录 【Python学习】Python学习15-模块 前言创建语法引入模块from…import 语句from…import* 语句搜索路径PYTHONPATH 变量-*- coding: UTF-8 -*-导入模块现在可以调用模块里包含的函数了PYTHONPATH 变量命名空间和作用域dir()函数globals() 和 locals() 函数reload() 函数Py…...

ARCGIS PRO SDK 设置UI控件状态:启用/禁用

举例&#xff1a; 第一步&#xff1a;添加两个 Button 分别命名为Connect、Disconnect 第二步&#xff1a;nfig.daml添加状态和条件&#xff1a;在 DAML 中定义条件。请记住&#xff0c;条件存在于模块标记<modules>之外&#xff0c;下代码定义&#xff1a;Disconnected_…...

案例126:基于微信小程序的民大食堂用餐综合服务平台

文末获取源码 开发语言&#xff1a;Java 框架&#xff1a;SSM JDK版本&#xff1a;JDK1.8 数据库&#xff1a;mysql 5.7 开发软件&#xff1a;eclipse/myeclipse/idea Maven包&#xff1a;Maven3.5.4 小程序框架&#xff1a;uniapp 小程序开发软件&#xff1a;HBuilder X 小程序…...

cephfs 配置 mds stancd replay 操作

目的 1 假设有某个客户创建过千万文件目录,可以导致 ceph-mds 故障 2 backup ceph-mds 拉起时需要从内存中 replay 最后操作,可能需要吧当前目录中所有目> 录结构 重新 reload 至内存 3 这个过程可能需要几小时,可能需要几天 4 为了快速地拉起 ceph-mds 5 可以选择配置一…...

【2023我的编程之旅】系统学习C语言easyx图形库心得体会

目录 引言 C语言基础知识回顾 easyx图形库介绍 如何快速学习easyx图形库 学习笔记积累 学习成果展示 学习拓展 总结 引言 首先说一下我为什么要学习C语言easyx图形库。我接触C语言easyx图形库是在我今年一月份的时候&#xff0c;也是机缘巧合之下偶然在B站上看到了鸣人…...

【linux】软链接创建(linux的快捷方式创建)

软连接的概念 类似于windows系统中的快捷方式。有的文件目录很长或者每次使用都要找很不方便&#xff0c;于是可以用类似windows的快捷方式的软链接在home&#xff08;初始目录类似于桌面&#xff09;上创建一些软链接方便使用。 软链接的语法 ln -s 参数1 参数2 参数1&#…...

基于BP神经网络的光伏发电预测

目录 摘要 BP神经网络参数设置及各种函数选择 参数设置 训练函数 传递函数 学习函数 性能函数 显示函数 前向网络创建函数 BP神经网络训练窗口详解 训练窗口例样 训练窗口四部详解 基于BP神经网络的租金预测 代码下载:19-66天气预测光伏发电.rar(代码完整,数据齐全)资源-C…...

RPA财务机器人在厦门市海沧医院财务管理流程优化汇总的应用RPA全球生态 2024-01-05 17:27 发表于河北

目前国内外研究人员对于RPA机器人在财务管理流程优化领域中的应用研究层出不穷&#xff0c;但现有研究成果主要集中在财务业务单一领域&#xff0c;缺乏财务管理整体流程一体化管控的研究。RPA机器人的功能绝非单一的财务业务处理&#xff0c;无论从自身技术发展&#xff0c;或…...

应用在LCD显示器电源插头里的氮化镓(GaN)MTC-65W1C

LCD&#xff08;Liquid Crystal Display&#xff09;显示器是利用液晶显示技术来进行图像表现的显示装置&#xff0c;从液晶显示器的结构来看&#xff0c;无论是笔记本电脑还是桌面系统&#xff0c;采用的LCD显示屏都是由不同部分组成的分层结构。LCD显示器按照控制方式不同可分…...

Vue新手村(二)

目录 1、计算属性 2、事件修饰符 2.1、stop事件修饰符 2.2、prevent事件修饰符 2.3、self事件修饰符 2.4、once事件修饰符 3、按键修饰符 3.1、enter回车键 1、计算属性 计算属性&#xff1a; computed&#xff1a;vue官方提供一个计算属性作用&#xff1a;在完成某种业…...

Mysql-redoLog

Redo Log redo log进行刷盘的效率要远高于数据页刷盘,具体表现如下 redo log体积小,只记录了哪一页修改的内容,因此体积小,刷盘快 redo log是一直往末尾进行追加,属于顺序IO。效率显然比随机IO来的快Redo log 格式 在MySQL的InnoDB存储引擎中,redo log(重做日志)被用…...

编程笔记 html5cssjs 039 CSS背景示例

编程笔记 html5&css&js 039 CSS背景示例 一、html二、css小结 网页上只有三个水平并列大小相同的的DIV&#xff0c;大小为300p*200,如何使用CSS让它们整体水平和垂直都居中&#xff0c;并使用不同的背景色&#xff1f; 一、html 要在网页上实现三个水平并列且大小相同…...

沃尔玛如何通过安全、有效的测评补单提升产品权重?

在沃尔玛的众多卖家之中&#xff0c;如何让自己脱颖而出&#xff1f;这不仅需要我们提供具有竞争力的价格&#xff0c;更需要我们提升产品的评分和权重。要让更多的客户注意到我们的产品&#xff0c;补单测评或许是一种有效的策略。尤其在新品上架初期&#xff0c;由于缺乏好评…...

后进先出(LIFO)详解

LIFO 是 Last In, First Out 的缩写&#xff0c;中文译为后进先出。这是一种数据结构的工作原则&#xff0c;类似于一摞盘子或一叠书本&#xff1a; 最后放进去的元素最先出来 -想象往筒状容器里放盘子&#xff1a; &#xff08;1&#xff09;你放进的最后一个盘子&#xff08…...

生成xcframework

打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式&#xff0c;可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

业务系统对接大模型的基础方案:架构设计与关键步骤

业务系统对接大模型&#xff1a;架构设计与关键步骤 在当今数字化转型的浪潮中&#xff0c;大语言模型&#xff08;LLM&#xff09;已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中&#xff0c;不仅可以优化用户体验&#xff0c;还能为业务决策提供…...

Ubuntu系统下交叉编译openssl

一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机&#xff1a;Ubuntu 20.04.6 LTSHost&#xff1a;ARM32位交叉编译器&#xff1a;arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...

docker详细操作--未完待续

docker介绍 docker官网: Docker&#xff1a;加速容器应用程序开发 harbor官网&#xff1a;Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台&#xff0c;用于将应用程序及其依赖项&#xff08;如库、运行时环…...

Prompt Tuning、P-Tuning、Prefix Tuning的区别

一、Prompt Tuning、P-Tuning、Prefix Tuning的区别 1. Prompt Tuning(提示调优) 核心思想:固定预训练模型参数,仅学习额外的连续提示向量(通常是嵌入层的一部分)。实现方式:在输入文本前添加可训练的连续向量(软提示),模型只更新这些提示参数。优势:参数量少(仅提…...

FFmpeg 低延迟同屏方案

引言 在实时互动需求激增的当下&#xff0c;无论是在线教育中的师生同屏演示、远程办公的屏幕共享协作&#xff0c;还是游戏直播的画面实时传输&#xff0c;低延迟同屏已成为保障用户体验的核心指标。FFmpeg 作为一款功能强大的多媒体框架&#xff0c;凭借其灵活的编解码、数据…...

ETLCloud可能遇到的问题有哪些?常见坑位解析

数据集成平台ETLCloud&#xff0c;主要用于支持数据的抽取&#xff08;Extract&#xff09;、转换&#xff08;Transform&#xff09;和加载&#xff08;Load&#xff09;过程。提供了一个简洁直观的界面&#xff0c;以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、&#x1f44b;&#x1f3fb;前言 二、&#x1f608;sinx波动的基本原理 三、&#x1f608;波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、&#x1f30a;波动优化…...