当前位置: 首页 > news >正文

动态规划Day06(完全背包)

完全背包

有N件物品和一个最多能背重量为W的背包。第i件物品的重量是weight[i],得到的价值是value[i] 。每件物品都有无限个(也就是可以放入背包多次),求解将哪些物品装入背包里物品价值总和最大。

完全背包和01背包问题唯一不同的地方就是,每种物品有无限件

同样leetcode上没有纯完全背包问题,都是需要完全背包的各种应用,需要转化成完全背包问题,所以我这里还是以纯完全背包问题进行讲解理论和原理。

每件物品可以放入多次

为什么遍历物品在外层循环,遍历背包容量在内层循环?

01背包中二维dp数组的两个for遍历的先后循序是可以颠倒了,一维dp数组的两个for循环先后循序一定是先遍历物品,再遍历背包容量。

在完全背包中,对于一维dp数组来说,其实两个for循环嵌套顺序是无所谓的!

因为dp[j] 是根据 下标j之前所对应的dp[j]计算出来的。 只要保证下标j之前的dp[j]都是经过计算的就可以了。

518.零钱兑换II(两次)

力扣题目链接(opens new window)

给定不同面额的硬币和一个总金额。写出函数来计算可以凑成总金额的硬币组合数。假设每一种面额的硬币有无限个。

示例 1:

  • 输入: amount = 5, coins = [1, 2, 5]
  • 输出: 4

解释: 有四种方式可以凑成总金额:

  • 5=5
  • 5=2+2+1
  • 5=2+1+1+1
  • 5=1+1+1+1+1
看到题目的第一想法

       确定可以凑成dp的组合数

        但是相同面额的可以重复,使用完全背包

看到代码随想录之后的想法

        确定dp数组以及每个下标的含义

        dp[j] 为0~i之间能凑成j金额所需要的次数

         i为coins下标

        确定递推公式

        选中coins[i] ,则一共有j-coins[i]种能凑成j 

        再加上本身的dp[j] ,就知道添加了coins[i]后一共要多少次

        dp[j] = dp[j] + dp[j-coins[i]]

         确定遍历顺序

        可以重复添加物品,则从前往后

        dp数组初始化

         dp[0]=1为一切的源头,其他都为0

        举例推导dp数组

        

自己实现过程中遇到的困难

        我自己写成了  max(dp[j],dp[j-weight[i]]+1) 记混了

        要理解组合数,求的是能凑成j的数目,需要累加j-coins[i]

class Solution {public int change(int amount, int[] coins) {//有多少种方式可以凑成对应面额// 确定dp数组以及每个下标的的含义// 能凑成目标金额的最大个数// 确定递推公式// dp[i]+=dp[i-nums[i]]// dp数组初始化// dp[0]=1;其他都为0// 确定遍历顺序// 从前往后,因为可以重复// 手动推导dp数组// 打印dp数组int dp[] = new int[amount+1];dp[0]=1;for(int i=0;i<coins.length;i++){//从前往后for(int j=coins[i];j<=amount;j++){dp[j]=dp[j]+dp[j-coins[i]];}}return dp[amount];}
}

377. 组合总和 Ⅳ

力扣题目链接(opens new window)

难度:中等

给定一个由正整数组成且不存在重复数字的数组,找出和为给定目标正整数的组合的个数。

示例:

  • nums = [1, 2, 3]
  • target = 4

所有可能的组合为: (1, 1, 1, 1) (1, 1, 2) (1, 2, 1) (1, 3) (2, 1, 1) (2, 2) (3, 1)

请注意,顺序不同的序列被视作不同的组合。

因此输出为 7。

看到题目的第一想法

        可以凑成目标正整数的组合的个数。

        和零钱兑换II差不多

看到代码随想录之后的想法

        确定dp数组以及每个下标的含义

        dp[j] 为0~i之间能凑成target所需要的次数

         i为nums下标

        确定递推公式

        选中nums[i] ,则一共有j-nums[i]种能凑成j 

        再加上本身的dp[j] ,就知道添加了nums[i]后一共要多少次

        dp[j] = dp[j] + dp[j-nums[i]]

         确定遍历顺序

        可以重复添加物品,则从前往后

        比如说 (1231) 若可以凑成target

        如果先物品后背包  物品1 遍历完后  ,将再也不会遍历到1,之后遍历的是物品2,3,4

        所以必须先背包后物品

        外层循环是背包容量,物品按照 1 2 3 4的顺序,依次遍历 则 遍历完1,2,3还能遍历回1

        dp数组初始化

         dp[0]=1为一切的源头,其他都为0

        举例推导dp数组

        

自己实现过程中遇到的困难

        需要确认组合数和排列数的区别(看代码注释)

         组合数: 不强调顺序,不同顺序的都视为一个集合,必须先物品再背包
         排列数: 本题不同的地方在于不同顺序的视为不同集合,则必须先背包再物品
        

class Solution {public int combinationSum4(int[] nums, int target) {// 组合数:先遍历物品再遍历背包:每次选中一个物品都会遍历所有背包 1号物品一定在2号物品的前面// 排列数:先遍历背包再遍历物品:则每次选中一个背包都会遍历所有物品 每次都是 1号物品,2号物品。。。。 // 第二次 1号物品2号物品  1 2 交替 // 确定dp数组,以及对应下标的含义// 在0~i中满足总和为j的元素的个数,背包重量nums[i]  背包价值nums[i]// 确定递推公式// dp[j]+=dp[j-nums[i]]// dp数组的初始化// dp[0]=1 // 确定遍历顺序// 可以重复 从前往后// 组合数: 不强调顺序,不同顺序的都视为一个集合,必须先物品再背包// 排列数: 本题不同的地方在于不同顺序的视为不同集合,则必须先背包再物品// 手动推导dp数组int[] dp = new int[target+1];dp[0]=1;for(int j=0;j<=target;j++){for(int i=0;i<nums.length;i++){if(j>=nums[i]){dp[j]+=dp[j-nums[i]];}}}return dp[target];}
}

相关文章:

动态规划Day06(完全背包)

完全背包 有N件物品和一个最多能背重量为W的背包。第i件物品的重量是weight[i]&#xff0c;得到的价值是value[i] 。每件物品都有无限个&#xff08;也就是可以放入背包多次&#xff09;&#xff0c;求解将哪些物品装入背包里物品价值总和最大。 完全背包和01背包问题唯一不同…...

selenium之框架之窗口

...

华为OD机试 - 最小矩阵宽度(Java JS Python C)

题目描述 给定一个矩阵,包含 N * M 个整数,和一个包含 K 个整数的数组。 现在要求在这个矩阵中找一个宽度最小的子矩阵,要求子矩阵包含数组中所有的整数。 输入描述 第一行输入两个正整数 N,M,表示矩阵大小。 接下来 N 行 M 列表示矩阵内容。 下一行包含一个正整数 K…...

嵌入式linux_C应用学习之API函数

1.文件IO 1.1 open打开文件 #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> int open(const char *pathname, int flags); int open(const char *pathname, int flags, mode_t mode);pathname&#xff1a;字符串类型&#xff0c;用于标…...

【ubuntu】docker中如何ping其他ip或外网

docker中如何ping其他ip或外网 示例图&#xff1a; 运行下面命令&#xff1a; docker run -it --namehei busybox看情况需要加权限 sudo&#xff0c;即&#xff1a; sudo docker run -it --namehei busyboxping 外网 ping -c 4 www.baidu.comping 内网 ping -c 4 192.168.…...

【Vue3+Ts项目】硅谷甄选 — 品牌管理+平台属性管理+SPU管理+SKU管理

一、品牌管理模块 1.1 静态模块搭建 使用到element-plus的card、button、table、pagination等组件&#xff1a;src/views/product/trademark/index.vue <template><el-card><!-- 卡片顶部添加品牌按钮 --><el-button type"primary" size&quo…...

计算机图形学流体模拟 blender 渲染脚本

做流体模拟的时候&#xff0c;想要复现别人的成果&#xff0c;但是别人的代码都是每帧输出 ply 格式的文件&#xff0c;渲染部分需要自己完成 看了一下&#xff0c;似乎用 blender 是最简单的&#xff0c;于是记录一下过程中用到的代码 Blender 版本 4.0 批量导入 ply 假设…...

二分图带权最大匹配-KM算法详解

文章目录 零、前言一、红娘再牵线二、二分图带权最大完备匹配2.1二分图带权最大匹配2.2概念2.3KM算法2.3.1交错树2.3.2顶标2.3.3相等子图2.3.4算法原理2.3.5算法实现 三、OJ练习3.1奔小康赚大钱3.2Ants 零、前言 关于二分图&#xff1a;二分图及染色法判定-CSDN博客 关于二分…...

Redis命令 - Sets命令组常用命令

Set集合&#xff0c;无序&#xff0c;一堆不重复值的组合。利用redis提供的set数据结构&#xff0c;可以存储一些集合性的数据。 使用场景&#xff1a;例如&#xff0c;实现如共同关注、共同喜好、二度好友等 1、SADD key member [member …] 向集合中添加一个或者多个成员 …...

DA14531-外设驱动篇-I2C通信应用

文章目录 1.I2C通信应用相关文件2.宏定义列表3.主要函数接口4.应用代码实例1.I2C通信应用相关文件 1)i2c.c和i2c.h(SDK文件) 2)app_I2cProtocol.c和app_I2cProtocol.h(用户应用文件) 2.宏定义列表 宏定义注解I2C_ADDRESSING_7B7-bit 地址I2C_ADDRESSING_10B10-bit 地址…...

Git仓库管理笔记

问题&#xff1a; hint: the same ref. If you want to integrate the remote changes, use Done 解决&#xff1a; 解决方法&#xff1a; 1、先使用pull命令&#xff1a; git pull --rebase origin master 2、再使用push命令&#xff1a; git push -u origin master...

[嵌入式软件][入门篇] 搭建在线仿真平台(STM32)

文章目录 一、注册平台二、创建首个项目三、硬件介绍 一、注册平台 进入官方&#xff0c;进行注册&#xff1a; 在线仿真地址 二、创建首个项目 ① 新建项目 ② 搭建一个电路 ③ 用STM32F103搭建一个简单电路 ④ 进入编码界面 三、硬件介绍 红框是必看文档&#xff…...

设置5台SSH互免的虚拟机服务器配置

搭建一套集群虚拟机&#xff0c;往往都需要互免设置&#xff0c;过程很简单&#xff0c;避免以后再搭建还得网上搜索&#xff0c;我直接将这一个步骤写成笔记&#xff0c;记录下来&#xff0c;方便后续查阅。 步骤如下—— 1、准备五台机器 服务器名字服务器IPhadoop1192.16…...

深信服技术认证“SCCA-C”划重点:交付和运维体系

为帮助大家更加系统化地学习云计算知识&#xff0c;高效通过云计算工程师认证&#xff0c;深信服特推出“SCCA-C认证备考秘笈”&#xff0c;共十期内容。“考试重点”内容框架&#xff0c;帮助大家快速get重点知识。 划重点来啦 *点击图片放大展示 深信服云计算认证&#xff…...

xlua源码分析(五) struct类型优化

xlua源码分析&#xff08;五&#xff09; struct类型优化 上一节我们分析了xlua是如何实现lua层访问C#值类型的&#xff0c;其中我们重点提到了xlua默认实现方式下&#xff0c;struct访问的效率问题。实际上&#xff0c;xlua还提供了两种优化的方式&#xff0c;可以大大提高str…...

iptables TEE模块测试小记

概述 因为公司项目需求&#xff0c;需要对服务器特定端口进行流量镜像&#xff0c;各种百度之后&#xff0c;发现TEE的模块&#xff0c;后来一番折腾&#xff0c;发现被转发的机器死活收不到数据&#xff0c;最后tcpdump一通了解到根源&#xff0c;博文记录&#xff0c;用以备…...

[IDE]vscode显示文件路径

...

facebook广告怎么设置受众人群

在设置Facebook广告受众人群时&#xff0c;你可以遵循以下步骤&#xff1a; 打开广告创建工具&#xff0c;点击页面右上角的箭头并选择“创建广告”。选择广告目标&#xff0c;根据想要实现的目标创建广告。例如&#xff0c;想要让更多用户谈论你的主页和帖子&#xff0c;或者…...

MySQL夯实之路-MVCC机制深入浅出

多版本并发控制&#xff08;MVCC&#xff0c;multiversion concurrency control&#xff09; MVCC用更加灵活的方式处理并发&#xff0c;实现了读不加锁&#xff0c;读写不冲突。保证了事务的隔离性&#xff08;可重复读&#xff09;&#xff0c;避免了不可重复读问题。 数据…...

Java线上问题堆栈排查分析

最近线上出现类似内存溢出问题&#xff0c;需要排查具体原因&#xff0c;记录过程&#xff0c;方便备查。 一、数据抓取 在启动参数中添加参数&#xff0c;可参照以下设置。 参数的作用是在程序发生内存溢出 OutOfMemory 时打印日志&#xff0c;dump下来&#xff0c;方便用工…...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子&#xff0c;用于处理异步操作&#xff08;如数据加载&#xff09;中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误&#xff1a;捕获在 loader 或 action 中发生的异步错误替…...

docker详细操作--未完待续

docker介绍 docker官网: Docker&#xff1a;加速容器应用程序开发 harbor官网&#xff1a;Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台&#xff0c;用于将应用程序及其依赖项&#xff08;如库、运行时环…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat&#xff08;I/O Statistics&#xff09;是Linux系统下用于监视系统输入输出设备和CPU使…...

【论文笔记】若干矿井粉尘检测算法概述

总的来说&#xff0c;传统机器学习、传统机器学习与深度学习的结合、LSTM等算法所需要的数据集来源于矿井传感器测量的粉尘浓度&#xff0c;通过建立回归模型来预测未来矿井的粉尘浓度。传统机器学习算法性能易受数据中极端值的影响。YOLO等计算机视觉算法所需要的数据集来源于…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)

🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作

一、上下文切换 即使单核CPU也可以进行多线程执行代码&#xff0c;CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短&#xff0c;所以CPU会不断地切换线程执行&#xff0c;从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

QT: `long long` 类型转换为 `QString` 2025.6.5

在 Qt 中&#xff0c;将 long long 类型转换为 QString 可以通过以下两种常用方法实现&#xff1a; 方法 1&#xff1a;使用 QString::number() 直接调用 QString 的静态方法 number()&#xff0c;将数值转换为字符串&#xff1a; long long value 1234567890123456789LL; …...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、&#x1f44b;&#x1f3fb;前言 二、&#x1f608;sinx波动的基本原理 三、&#x1f608;波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、&#x1f30a;波动优化…...

docker 部署发现spring.profiles.active 问题

报错&#xff1a; org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...