当前位置: 首页 > news >正文

python入门,数据容器的通用操作(len,max,min,sorted)

1.len统计容器内元素个数

 

2.max统计元素最大元素

 

3.min统计元素最小元素

 4.容器的转化功能

list(容器)将给定容器转化为列表

字符串转列表将字符串内的每一个元素都取了出来作为列表的每一个元素

字典则只会取出它的key,value会消失

str(容器)将给定容器转化为字符串

转化为字符串相当于在容器的两边加上双引号

tuple(容器)将给定容器转化为元组

set(容器)将给定容器转化为集合

转化为集合后会变为无序

5.sorted容器的排序功能

sorted(容器,[reverse = True])

reverse默认为false,如果想要将排序结果反转,传递一个true

 

 

 对字典排序会丢失掉它的value

相关文章:

python入门,数据容器的通用操作(len,max,min,sorted)

1.len统计容器内元素个数 2.max统计元素最大元素 3.min统计元素最小元素 4.容器的转化功能 list(容器)将给定容器转化为列表 字符串转列表将字符串内的每一个元素都取了出来作为列表的每一个元素 字典则只会取出它的key,value会消失 str&…...

运筹说 第67期 | 动态规划模型的建立与求解

通过前一期的学习,我们已经学会了动态规划的基本概念和基本原理。本期小编带大家学习动态规划模型的建立与求解。 动态规划模型的建立 一 概述 建立动态规划的模型,就是分析问题并建立问题的动态规划基本方程。 成功地应用动态规划方法的关键&#x…...

大模型压缩与优化的技术原理与创新方法

目录 前言1 模型压缩简介2 知识蒸馏3 模型剪枝3.1 结构化剪枝3.2 非结构化剪枝 4 模型量化4.1 浮点表示 vs 定点表示4.2 位数选择与性能影响4.3 量化技术 5 其他模型压缩方法5.1 Weight Sharing: 参数共享5.2 Low-rank Approximation: 低秩分解5.3 Architecture Search: 神经网…...

ConcurrentSkipListMap 深度解析

ConcurrentSkipListMap是Java集合框架中的一员,它实现了ConcurrentNavigableMap接口,基于跳表(Skip List)实现,并提供了高效的并发控制。在本文中,我们将深入研究ConcurrentSkipListMap的底层实现原理、适用…...

Vue学习笔记6--配置代理

一、axios Axios 是一个基于 promise 网络请求库,作用于node.js 和浏览器中。 它是 isomorphic 的(即同一套代码可以运行在浏览器和node.js中)。在服务端它使用原生 node.js http 模块, 而在客户端 (浏览端) 则使用 XMLHttpRequests。 二、配置代理 1. 方法一 在…...

嵌入式培训机构四个月实训课程笔记(完整版)-C++和QT编程第三天-C++类和对象高级应用(物联技术666)

链接:https://pan.baidu.com/s/1YRXI0WiABUlYaQXQDNfbyA?pwd=1688 提取码:1688 上午:类和对象高级应用(续) 下午:派生和继承 教学内容: 1、友元 类的私有成员只能在类定义的范围内使用,也就是说私有成员只能通过它的成员函数来访问但是,有时候需要在类的外部访问…...

SAP中采购文档价格条件可以删除吗?

首先要声名,基于采购价格条件的严谨性和历史追朔需求,删除属于危险操作。不建议普通用户去执行操作。如果有兴趣,在测试系统中自行测试一下即可。正式系统中,还请慎重处理。 笔者公司日常不会去删除采购价格,日常处理…...

Baumer工业相机堡盟工业相机如何通过NEOAPI SDK设置硬件触发模式(C++)

Baumer工业相机堡盟工业相机如何通过NEOAPI SDK设置硬件触发模式(C) Baumer工业相机Baumer工业相机NEOAPI SDK和硬件触发模式的技术背景Baumer工业相机通过BGAPISDK设置硬件触发模式功能1.引用合适的类文件2.通过BGAPISDK在Line0上施加12V/24V电压信号实…...

嵌入式培训机构四个月实训课程笔记(完整版)-Linux网络编程第二天-tcp编程练习(物联技术666)

点赞+关注,功德无量。更多配套资料,欢迎私信。 网盘链接:百度网盘 请输入提取码 WebServer编程: -------------------------------------- #include <stdio.h> #include <stdlib.h> #include <string.h> #i…...

【IC前端虚拟项目】MVU子模块DS文档编写与注意事项

【IC前端虚拟项目】数据搬运指令处理模块前端实现虚拟项目说明-CSDN博客 DS文档顾名思义就是Design Specification,设计规格文档,对应的就是我们实际一个模块的设计思路和细节: DS - Design Specification(设计规格):"DS" 表示设计规格,它是在架构规格之后,…...

Postgresql 12.2 + PostGIS 3.0.1 安装部署

参考文档&#xff1a; 按照该文档安装即可&#xff0c;如果遇到报错&#xff0c;可以参考下文&#xff1a; https://blog.csdn.net/weixin_41166785/article/details/127674169 所需的安装包 在资源里面&#xff08;我看下怎么可以不用积分下载&#xff09; 1、no acceptable…...

MAC iterm 显示git分支名

要在Mac上的iTerm中显示Git分支名&#xff0c;您需要使用一个名为“Oh My Zsh”的插件。Oh My Zsh是一个流行的Zsh框架&#xff0c;它提供了许多有用的功能和插件&#xff0c;包括在终端中显示Git分支名。 以下是在iTerm中显示Git分支名的步骤&#xff1a; 1、安装Oh My Zsh&…...

智慧公厕:利用物联网、云计算和人工智能实现智能化管理与控制

智慧公厕是指利用传感感知、物联网、互联网、大数据、云计算、自动化控制等先进技术&#xff0c;实现对公厕的智能化管理与控制。通过以上高精尖的信息技术手段&#xff0c;可以实时监测厕所内人体活动状态、人体存在状态、空气质量情况、环境变化情况、设施设备运行状态等信息…...

【漏洞复现】Apache Tomcat AJP文件包含漏洞(CVE-2020-1938)

Nx01 产品简介 Apache Tomcat 是一个免费的开源 Web 应用服务器&#xff0c;在中小型企业和个人开发用户中有着广泛的应用。 Nx02 漏洞描述 默认情况下&#xff0c;Apache Tomcat会开启AJP连接器&#xff0c;由于AJP服务&#xff08;8009端口&#xff09;存在文件包含缺陷&…...

[渗透测试学习] Hospital - HackTheBox

文章目录 信息搜集getshell提权信息搜集 nmap扫描一下端口 发现8080端口和443端口有http服务 然后发现3389端口是启用了ms-wbt-server服务 在对443端口的扫描没有收获,并且只有邮箱登录界面无法注册 接着看向8080端口,我们随便注册用户登录后发现有文件上传功能 getshell …...

C技能树-学习笔记(1-2)C语言概述和数据类型

参考&#xff1a;https://edu.csdn.net/skill/c 1、输出 “Hello, World!” 字符串&#xff0c;请选出错误答案。 2、错误的print函数。 for … in …&#xff1a;是python的语法&#xff0c;C语言的写法是for (;&#x1f609; 3、C标准 没有C19标准。 4、了解C编译管道 …...

设计模式入门

0. 类图 1. 设计原则 1.单一职责原则&#xff1a;每个类只有一个功能 2.开放封闭原则&#xff1a;模块和函数应该对扩展开放(对提供方)&#xff0c;对修改关闭(对使用方) 3.里氏代换原则&#xff1a;子类拥有父类的所有方法和属性&#xff0c;从而可以减少创建类的工作量 4.依…...

EasyExcel下载EXCEL文件,后台通过流形式输出到前端浏览器下载方式输出

前端代码&#xff08;参考&#xff09;&#xff1a;$("#import").on(click, function(){var createDate$("#createdDate").val();var key1$("#key1").val();if(createDatenull||createDate""){layer.msg("请选择创建时间段&#…...

Pandas实战100例 | 案例 56: 创建多重索引

案例 56: 创建多重索引 知识点讲解 在 Pandas 中&#xff0c;多重索引&#xff08;或层次化索引&#xff09;提供了在 DataFrame 中表示多维数据的方式。这使得数据分析在多个级别上更加灵活和强大。 创建多重索引: 通过使用 set_index 方法并传入多个列名&#xff0c;可以在…...

解决“nacos默认secret.key配置不当权限绕过漏洞“

一、前言 nacos 2.2.0.1以下版本会有一个nacos默认secret.key配置不当权限绕过漏洞&#xff0c;等级为高危。形成原因是nacos的配置文件中存在这么一个secret.key默认配置&#xff1a; nacos.core.auth.plugin.nacos.token.secret.keySecretKey01234567890123456789012345678…...

手游刚开服就被攻击怎么办?如何防御DDoS?

开服初期是手游最脆弱的阶段&#xff0c;极易成为DDoS攻击的目标。一旦遭遇攻击&#xff0c;可能导致服务器瘫痪、玩家流失&#xff0c;甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案&#xff0c;帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...

Linux链表操作全解析

Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表&#xff1f;1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...

MFC内存泄露

1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...

基于uniapp+WebSocket实现聊天对话、消息监听、消息推送、聊天室等功能,多端兼容

基于 ​UniApp + WebSocket​实现多端兼容的实时通讯系统,涵盖WebSocket连接建立、消息收发机制、多端兼容性配置、消息实时监听等功能,适配​微信小程序、H5、Android、iOS等终端 目录 技术选型分析WebSocket协议优势UniApp跨平台特性WebSocket 基础实现连接管理消息收发连接…...

STM32+rt-thread判断是否联网

一、根据NETDEV_FLAG_INTERNET_UP位判断 static bool is_conncected(void) {struct netdev *dev RT_NULL;dev netdev_get_first_by_flags(NETDEV_FLAG_INTERNET_UP);if (dev RT_NULL){printf("wait netdev internet up...");return false;}else{printf("loc…...

Java面试专项一-准备篇

一、企业简历筛选规则 一般企业的简历筛选流程&#xff1a;首先由HR先筛选一部分简历后&#xff0c;在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如&#xff1a;Boss直聘&#xff08;招聘方平台&#xff09; 直接按照条件进行筛选 例如&#xff1a…...

C++八股 —— 单例模式

文章目录 1. 基本概念2. 设计要点3. 实现方式4. 详解懒汉模式 1. 基本概念 线程安全&#xff08;Thread Safety&#xff09; 线程安全是指在多线程环境下&#xff0c;某个函数、类或代码片段能够被多个线程同时调用时&#xff0c;仍能保证数据的一致性和逻辑的正确性&#xf…...

AI病理诊断七剑下天山,医疗未来触手可及

一、病理诊断困局&#xff1a;刀尖上的医学艺术 1.1 金标准背后的隐痛 病理诊断被誉为"诊断的诊断"&#xff0c;医生需通过显微镜观察组织切片&#xff0c;在细胞迷宫中捕捉癌变信号。某省病理质控报告显示&#xff0c;基层医院误诊率达12%-15%&#xff0c;专家会诊…...

Kafka入门-生产者

生产者 生产者发送流程&#xff1a; 延迟时间为0ms时&#xff0c;也就意味着每当有数据就会直接发送 异步发送API 异步发送和同步发送的不同在于&#xff1a;异步发送不需要等待结果&#xff0c;同步发送必须等待结果才能进行下一步发送。 普通异步发送 首先导入所需的k…...

在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)

考察一般的三次多项式&#xff0c;以r为参数&#xff1a; p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]&#xff1b; 此多项式的根为&#xff1a; 尽管看起来这个多项式是特殊的&#xff0c;其实一般的三次多项式都是可以通过线性变换化为这个形式…...