监督学习 - 梯度提升机(Gradient Boosting Machines,GBM)
什么是机器学习
梯度提升机(Gradient Boosting Machines,GBM)是一种集成学习方法,通过将多个弱学习器(通常是决策树)组合成一个强学习器来提高模型的性能。GBM的训练过程是通过迭代,每一步都根据前一步的模型误差来训练一个新的弱学习器,然后将其加到整体模型中。
以下是梯度提升机的基本原理和使用方法:
基本原理
- 弱学习器: GBM通常使用决策树作为基本的弱学习器,每个决策树负责对前一步模型的残差进行拟合。
- 梯度提升: 训练过程通过梯度下降进行,每一步都试图最小化损失函数的梯度。新模型的训练目标是拟合前一步模型的负梯度。
- 正则化: 为了防止过拟合,通常对每个弱学习器进行正则化,限制树的深度或节点的最小样本数。
- 集成: 最终的预测是所有弱学习器的加权和,权重是通过梯度提升过程中学到的。
使用方法
GBM的使用步骤通常包括以下几个阶段:
- 数据准备: 收集并准备好带标签的训练数据集。
- 选择基础学习器: 选择基础学习器,通常是决策树。
- 选择损失函数: 选择适当的损失函数,不同问题可能需要不同的损失函数。
- 选择正则化参数: 设置正则化参数,以控制弱学习器的复杂度。
- 选择学习率: 设置学习率,控制每一步迭代中新模型的权重。
- 训练模型: 通过迭代训练弱学习器,根据梯度下降逐步提升模型。
- 预测: 使用训练好的模型进行新数据的预测。
代码示例(使用Python和scikit-learn)
以下是一个简单的梯度提升机分类的示例:
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.metrics import accuracy_score, classification_report# 加载数据集
iris = load_iris()
X = iris.data
y = iris.target# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 创建梯度提升机模型
model = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1, max_depth=3, random_state=42)# 训练模型
model.fit(X_train, y_train)# 预测
y_pred = model.predict(X_test)# 评估模型性能
accuracy = accuracy_score(y_test, y_pred)
report = classification_report(y_test, y_pred)print(f'Accuracy: {accuracy}')
print(f'Classification Report:\n{report}')
在这个示例中,我们使用了GradientBoostingClassifier,你可以根据问题的性质调整模型的超参数,如n_estimators(弱学习器的数量)、learning_rate(学习率)和max_depth(树的深度)等。详细的参数说明可以在官方文档中找到。
相关文章:
监督学习 - 梯度提升机(Gradient Boosting Machines,GBM)
什么是机器学习 梯度提升机(Gradient Boosting Machines,GBM)是一种集成学习方法,通过将多个弱学习器(通常是决策树)组合成一个强学习器来提高模型的性能。GBM的训练过程是通过迭代,每一步都根…...
Mac M1 Parallels CentOS7.9 Install Jenkins
官网: https://www.jenkins.io/ 一、Install & Check Java Env Oracle官网下载Java: https://www.oracle.com/cn/ # 拷贝到Jenkins服务器 scp Downloads/jdk-11.0.21_linux-aarch64_bin.tar.gz root10.211.55.34:~# 解压 mkdir -p /opt/java && tar -zxvf jdk-11…...
【基于 InternLM 和 LangChain 搭建你的知识库】学习笔记
学习参考文档【基于 InternLM 和 LangChain 搭建你的知识库】 学习参考链接【书生・浦语大模型实战营第三课作业(基础进阶)】 理论 实战 收集原始数据 收集2018年-2020年几年间的优秀数学建模论文 修改脚本文件,测试文件 作业 复现课程知识库助手搭建过程 La…...
Redis面试系列-03
1. 为什么 Redis 集群的最大槽数是 16384 个? 在redis节点发送心跳包时需要把所有的槽放到这个心跳包中,以便让节点知道当前集群信息,即1638416k,在发送心跳包时使用char进行bitmap压缩后是2k(2*8 (8bit)*1024(1k)16K…...
如何结合告警丰富获取拨测失败的原因?
本期最佳实践为您揭秘: 如何使用pongo2模板语言获取指定的字符串内容如何结合告警丰富,过滤出有效的告警信息 「 背 景 」 在此前的最佳实践当中,我们为大家介绍了一个好的告警通知应该具备的条件。在一般的指标告警中,在告警信…...
学习JavaEE的日子 day12 构造方法 类的制作
Day12 需求:创建人类的对象,并操作对象 分析: 人类 - Person 属性:name、sex、age 方法:eat、sleep 场景:创建多个对象,去操作对象 //测试类:该类中有main方法,测试我们写…...
Mybatis-Plus基础学习
目录 第一章、快速了解mybatis-plus1.1)相关概念介绍1.2)为什么使用MyBatis-Plus1.3)学习过程中的疑问 第二章、 MyBatis-Plus与SpringBoot集成2.1)使用Spring Initializr创建SpringBoot项目2.2)安装Lombok插件2.3&…...
C#微信公众号HIS预约挂号系统源码
微信公众号预约挂号系统、支付宝小程序预约挂号系统主要是让自费、医保患者在手机上就能实现就医全过程,实时预约挂号、自费、医保结算,同时还可以查询检查检验报告等就诊信息,真正实现了让信息“多跑路”,让群众“少跑腿”。系统…...
MySQL基础笔记(6)函数
函数:是指一段可以直接被另一段程序调用的程序或者代码~(MySQL内置) 一.字符串函数 trim不能去除中间的空格~ select concat(jsl,1325): 执行如上的代码,返回字符串"jsl1325"。 select lower(JSL); 执行如上的代码&…...
初识 Elasticsearch 应用知识,一文读懂 Elasticsearch 知识文集(2)
🏆作者简介,普修罗双战士,一直追求不断学习和成长,在技术的道路上持续探索和实践。 🏆多年互联网行业从业经验,历任核心研发工程师,项目技术负责人。 🎉欢迎 👍点赞✍评论…...
Defi安全--Zunami Protocol攻击事件分析
其它相关内容可见个人主页 1 Zunami攻击事件相关信息 2023.8.13发生在Ethereum上发生的攻击,存在两个攻击交易,具体信息如下: 攻击合约地址:Contract Address 攻击合约 攻击者地址:Zunami Protocol Exploiter 攻击…...
虾皮电商 电商平台:虾皮(Shopee)东南亚领先的电子商务平台
在当今数字化时代,电子商务平台的兴起改变了人们的购物方式。虾皮(Shopee)作为东南亚地区领先的电子商务平台,为消费者提供了便捷、多样化的购物体验。由新加坡的Sea Group(前称Garena)于2015年创立&#x…...
【降龙算法】基于QT插件机制实现一个机器视觉算法小框架
机器视觉行业有各种各样的拖拉拽框架,也叫做低代码平台,例如国内海康的VisionMaster: 一个机器视觉框架需要包含各种算法模块,日志窗口,图像显示窗口等等,【降龙算法】就是做了一个入门级的机器视觉算法框…...
智能路由器 端口映射 (UPnP) Padavan内网端口映射配置方法
新版本Padavan 4.4内核的端口映射配置和老版本的不太一样,因为新版本默认是启用的 UPnP端口映射, 同时默认使用的是 IGD UPnP自动端口映射, UPnP名词解释: UPnP通用即插即用,是一组协议的统称,是一种基于TCP/IP、UDP和HTTP的分布式、开放体系ÿ…...
MR-GCN
∘ Φ \circ_Φ ∘Φ denotes a convolution Let b l o c k d i a g blockdiag blockdiag(A) be a n1n3-by-n2n3 block diagonal matrix, f o l d fold fold indicate its inverse operator diagonal degree tensor D \mathcal{D} D 作者未提供代码...
Java http 响应式请求和非响应式请求有什么区别
在Java中,HTTP的响应式请求和非响应式请求有以下区别: HTTP协议本身并不直接支持响应式请求,因为HTTP是基于请求-响应模型的。然而,可以通过使用其他技术和协议来实现响应式请求。 响应方式:响应式请求是指使用响应式编…...
CHS_06.2.1.6_2+线程的实现方式和多线程模型
CHS_06.2.1.6_2线程的实现方式和多线程模型 知识总览线程的实现方式用户级线程(User-Level Thread, ULT)内核级线程 多线程模型一对一模型多对一多对多模型 知识回顾 在上个小节中 我们学习了线程相关的一些基本概念 基础的知识 那这个小节中 我们回来看…...
k8s集群配置NodeLocal DNSCache
一、简介 当集群规模较大时,运行的服务非常多,服务之间的频繁进行大量域名解析,CoreDNS将会承受更大的压力,可能会导致如下影响: 延迟增加:有限的coredns服务在解析大量的域名时,会导致解析结果…...
Superpoint Transformer for 3D Scene Instance Segmentation
Abstract 现有的大多数方法通过扩展用于3D物体检测或3D语义分割的模型来实现3D实例分割。然而,这些非直接的方法存在两个缺点:1) 不精确的边界框或不令人满意的语义预测限制了整体3D实例分割框架的性能。2) 现有方法需要一个耗时的中间聚合步骤。为了解决这些问题,本文提出…...
adb调试软件下载 及 常用调试命令
一、软件下载 Windows版本:下载 Mac版本:下载 Linux版本:下载 二、常见调试命令 进入ADB调试 在文件路径栏输入cmd,回车,即可进入adb调试。注意:以下3条不要登录设备 shell (一)显…...
质量体系的重要
质量体系是为确保产品、服务或过程质量满足规定要求,由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面: 🏛️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限,形成层级清晰的管理网络…...
WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)
一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解,适合用作学习或写简历项目背景说明。 🧠 一、概念简介:Solidity 合约开发 Solidity 是一种专门为 以太坊(Ethereum)平台编写智能合约的高级编…...
select、poll、epoll 与 Reactor 模式
在高并发网络编程领域,高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表,以及基于它们实现的 Reactor 模式,为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。 一、I…...
用机器学习破解新能源领域的“弃风”难题
音乐发烧友深有体会,玩音乐的本质就是玩电网。火电声音偏暖,水电偏冷,风电偏空旷。至于太阳能发的电,则略显朦胧和单薄。 不知你是否有感觉,近两年家里的音响声音越来越冷,听起来越来越单薄? —…...
Docker 本地安装 mysql 数据库
Docker: Accelerated Container Application Development 下载对应操作系统版本的 docker ;并安装。 基础操作不再赘述。 打开 macOS 终端,开始 docker 安装mysql之旅 第一步 docker search mysql 》〉docker search mysql NAME DE…...
算法:模拟
1.替换所有的问号 1576. 替换所有的问号 - 力扣(LeetCode) 遍历字符串:通过外层循环逐一检查每个字符。遇到 ? 时处理: 内层循环遍历小写字母(a 到 z)。对每个字母检查是否满足: 与…...
Linux 中如何提取压缩文件 ?
Linux 是一种流行的开源操作系统,它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间,使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的,要在 …...
论文阅读笔记——Muffin: Testing Deep Learning Libraries via Neural Architecture Fuzzing
Muffin 论文 现有方法 CRADLE 和 LEMON,依赖模型推理阶段输出进行差分测试,但在训练阶段是不可行的,因为训练阶段直到最后才有固定输出,中间过程是不断变化的。API 库覆盖低,因为各个 API 都是在各种具体场景下使用。…...
Python 高效图像帧提取与视频编码:实战指南
Python 高效图像帧提取与视频编码:实战指南 在音视频处理领域,图像帧提取与视频编码是基础但极具挑战性的任务。Python 结合强大的第三方库(如 OpenCV、FFmpeg、PyAV),可以高效处理视频流,实现快速帧提取、压缩编码等关键功能。本文将深入介绍如何优化这些流程,提高处理…...
【threejs】每天一个小案例讲解:创建基本的3D场景
代码仓 GitHub - TiffanyHoo/three_practices: Learning three.js together! 可自行clone,无需安装依赖,直接liver-server运行/直接打开chapter01中的html文件 运行效果图 知识要点 核心三要素 场景(Scene) 使用 THREE.Scene(…...
