回归预测 | Matlab基于OOA-SVR鱼鹰算法优化支持向量机的数据多输入单输出回归预测
回归预测 | Matlab基于OOA-SVR鱼鹰算法优化支持向量机的数据多输入单输出回归预测
目录
- 回归预测 | Matlab基于OOA-SVR鱼鹰算法优化支持向量机的数据多输入单输出回归预测
- 预测效果
- 基本描述
- 程序设计
- 参考资料
预测效果









基本描述
1.Matlab基于OOA-SVR鱼鹰算法优化支持向量机的数据多输入单输出回归预测(完整源码和数据)
2.OOA选择最佳的SVM核函数参数c和g;
3.多特征输入单输出的回归预测。程序内注释详细,excel数据,直接替换数据就可以用。
4.程序语言为matlab,程序可出预测效果图,迭代优化图,相关分析图,运行环境matlab2020b及以上。评价指标包括:R2、RPD、MSE、RMSE、MAE、MAPE等。
5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

程序设计
- 完整程序和数据获取方式资源出下载Matlab基于OOA-SVR鱼鹰算法优化支持向量机的数据多输入单输出回归预测。
%% 参数设置
%% 优化算法
[Best_score,Best_pos, curve] = OOA(pop, Max_iteration, lb, ub, dim, fun); %% 获取最优参数
bestc = Best_pos(1, 1);
bestg = Best_pos(1, 2); %% 建立模型
cmd = [' -t 2 ', ' -c ', num2str(bestc), ' -g ', num2str(bestg), ' -s 3 -p 0.01 '];
model = svmtrain(t_train, p_train, cmd);%% 仿真预测
[t_sim1, error_1] = svmpredict(t_train, p_train, model);
[t_sim2, error_2] = svmpredict(t_test , p_test , model);%% 数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);
T_sim1 =T_sim1';
T_sim2 =T_sim2';
%% 适应度曲线
figure;
plot(1 : length(curve), curve, 'LineWidth', 1.5);
title('适应度曲线', 'FontSize', 13);
xlabel('迭代次数', 'FontSize', 13);
ylabel('适应度值', 'FontSize', 13);
grid
set(gcf,'color','w')%% 相关指标计算
%% 均方根误差
toc
%% 测试集结果
figure;
plotregression(T_test,T_sim2,['回归图']);
set(gcf,'color','w')
figure;
ploterrhist(T_test-T_sim2,['误差直方图']);
set(gcf,'color','w')
%% 均方根误差 RMSE
error1 = sqrt(sum((T_sim1 - T_train).^2)./M);
error2 = sqrt(sum((T_test - T_sim2).^2)./N);%%
%决定系数
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test - T_sim2)^2 / norm(T_test - mean(T_test ))^2;%%
%均方误差 MSE
mse1 = sum((T_sim1 - T_train).^2)./M;
mse2 = sum((T_sim2 - T_test).^2)./N;
%%
%RPD 剩余预测残差
SE1=std(T_sim1-T_train);
RPD1=std(T_train)/SE1;SE=std(T_sim2-T_test);
RPD2=std(T_test)/SE;
%% 平均绝对误差MAE
MAE1 = mean(abs(T_train - T_sim1));
MAE2 = mean(abs(T_test - T_sim2));
%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1)./T_train));
MAPE2 = mean(abs((T_test - T_sim2)./T_test));
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229
相关文章:
回归预测 | Matlab基于OOA-SVR鱼鹰算法优化支持向量机的数据多输入单输出回归预测
回归预测 | Matlab基于OOA-SVR鱼鹰算法优化支持向量机的数据多输入单输出回归预测 目录 回归预测 | Matlab基于OOA-SVR鱼鹰算法优化支持向量机的数据多输入单输出回归预测预测效果基本描述程序设计参考资料 预测效果 基本描述 1.Matlab基于OOA-SVR鱼鹰算法优化支持向量机的数据…...
Spring Boot整合MyBatis
引言 在现代Java开发中,Spring Boot和MyBatis被广泛使用,它们分别代表了轻量级的企业级开发框架和优秀的持久化框架。本文将探讨如何在Spring Boot项目中整合MyBatis,以构建高效、灵活且易于维护的持久层。通过这一完美结合,开发…...
MySQL语句 | 在MySQL中解析JSON或将表中字段值合并为JSON
MySQL提供了一系列的JSON函数来处理JSON数据,包括从JSON字符串中提取值和将表中字段值合并为JSON等。 在MySQL中解析JSON 可使用JSON_EXTRACT函数提取JSON字符串中指定字段的值,使用JSON_UNQUOTE函数去除提取的字符串值周围的引号,以得到原…...
基于springboot+vue的图书个性化推荐系统(前后端分离)
博主主页:猫头鹰源码 博主简介:Java领域优质创作者、CSDN博客专家、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战 主要内容:毕业设计(Javaweb项目|小程序等)、简历模板、学习资料、面试题库、技术咨询 文末联系获取 项目背景…...
将自然数序列剔除掉包含4的数字,求第k(1e12)个数是什么
题目 思路:将k转化为九进制,然后将大于等于4的数字加一 #include <bits/stdc.h> using namespace std; #define int long long #define pb push_back const int maxn 1e6 5, inf 1e9, maxm 5e3 5; int a[maxn], b[maxn]; string s; int n, …...
用Photoshop来制作GIF动画
录了个GIF格式的录屏文件,领导让再剪辑下,于是用Photoshop2023(PS版本低至CS6操作方式一样)进行剪辑,录屏文件有约1400帧,由于我处理的帧数太多,PS保存为GIF格式时,还是挺耗时的&…...
原地swap(inplace_swap)
inplace_swap algorithm based on exclusive-or (^) void inplace_swap(int *x, int *y) {*y *x ^ *y;*x *x ^ *y;*y *x ^ *y; }原理(展开为二进制计算异或即可): 0 ^ 0 0 0 ^ 1 1 1 ^ 0 1 1 ^ 1 0 reverse_array algorithm based on inplace_swap void re…...
《JVM由浅入深学习九】 2024-01-15》JVM由简入深学习提升分(生产项目内存飙升分析)
目录 开头语内存飙升问题分析与案例问题背景:我华为云的一个服务器运行我的一个项目“csdn-automatic-triplet-0.0.1-SNAPSHOT.jar”,由于只是用来测试的服务器,只有2G,所以分配给堆的内存1024M查询内存使用(top指令&a…...
统计学-R语言-4.6
文章目录 前言列联表条形图及其变种---单式条形图条形图及其变种---帕累托图条形图及其变种---复式条形图条形图及其变种---脊形图条形图及其变种---马赛克图饼图及其变种---饼图饼图及其变种---扇形图直方图茎叶图箱线图小提琴图气泡图总结 前言 本篇文章是对数据可视化的补充…...
git提权
实验环境——vulnhub-dc2靶场 git提权 前提:用户可以使用sudo中git权限 查看sudo权限 sudo -l可以发现git命令存在sudo提权 基于此进行权限提升 方式: sudo git help config #在末行命令模式输入 !/bin/bash 或 !sh #完成提权 sudo git -p help…...
实验四 SQL语言
🕺作者: 主页 我的专栏C语言从0到1探秘C数据结构从0到1探秘Linux 😘欢迎关注:👍点赞🙌收藏✍️留言 🏇码字不易,你的👍点赞🙌收藏❤️关注对我真的很重要&…...
2024年简历石沉大海,别投了,软件测试岗位饱和了....
🔥 交流讨论:欢迎加入我们一起学习! 🔥 资源分享:耗时200小时精选的「软件测试」资料包 🔥 教程推荐:火遍全网的《软件测试》教程 📢欢迎点赞 👍 收藏 ⭐留言 …...
JS执行顺序
众所周知,JavaScript 是单线程语言,只能同时执行做一件事(js只有一个线程,称之为main thread-主线程) 1.Javascript 运行机制 main thread 主线程和 call-stack 调用栈(执行栈),所有的任务都会被放到调用栈等待主线程执行。 2.Javascript 任…...
Vscode 上安装 Compilot
GitHub Copilot 是由 OpenAI 和 GitHub 开发的 AI 工具。其目的是通过自动完成代码来帮助开发人员使用集成开发环境 (IDE),如 Visual Studio Code。它目前仅作为技术预览版提供,因此只有已在候补名单上被接受的用户才能访问它。对…...
Spring集成MyBatis与MyBatis-Plus添加分页插件
项目场景: MyBatis使用分页插件PageHelperMyBatis-Plus3.4.0版本之前添加分页插件,使用配置PaginationInterceptor;MyBatis-Plus3.4.0版本添加分页插件,使用配置MybatisPlusInterceptor; 配置示例: 1、My…...
Windows下载安装vcpkg并使用它来安装第三方库(visualstudio)
1.使用Git下载vcpkg仓库(下载比较慢,个人比较喜欢打开下面网址然后用迅雷下载,速度飞快) git clone "https://github.com/Microsoft/vcpkg.git"2.下载好之后解压打开文件夹,双击bootstrap-vcpkg.bat文件&…...
leetcode-2788按分隔符拆分字符串
题目链接 2788. 按分隔符拆分字符串 - 力扣(LeetCode) 解题思路 class Solution:def splitWordsBySeparator(self, words: List[str], separator: str) -> List[str]:result []for i in words:for j in i.split(separator):if j:result.append(j)…...
使用Ctrl+Alt+T快速打开Windows Terminal终端
在Ubuntu中我们通常使用CtrlAltT来快速打开终端,这样即炫酷又方便。然而在Windows并没有默认快捷键打开终端的操作,需要我们折腾一番。操作也不复杂,可以通过一般人都不知道用来干什么的“快捷方式”来实现。 创建Windows Terminal终端的快捷…...
Redis 消息队列和发布订阅
文章目录 基本模式生产者消费者原理&模型redis实现java实现 发布者订阅者原理&模型redis实现java实现 stream模式原理&模型工作原理redis实现Java实现 选型外传 基本模式 采用redis 三种方案: ● 生产者消费者:一个消息只能有一个消费者 ●…...
去掉element-ui的el-table的所有边框+表头+背景颜色
实例: 1.去掉table表头(加上:show-header"false") <el-table:data"tableData":show-header"false"style"width: 100%"> </el-table> 2.去掉table所有边框 ::v-deep .el-table--border th.el-table__cell, ::v-deep .el…...
多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度
一、引言:多云环境的技术复杂性本质 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时,基础设施的技术债呈现指数级积累。网络连接、身份认证、成本管理这三大核心挑战相互嵌套:跨云网络构建数据…...
mongodb源码分析session执行handleRequest命令find过程
mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程,并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令,把数据流转换成Message,状态转变流程是:State::Created 》 St…...
LeetCode - 394. 字符串解码
题目 394. 字符串解码 - 力扣(LeetCode) 思路 使用两个栈:一个存储重复次数,一个存储字符串 遍历输入字符串: 数字处理:遇到数字时,累积计算重复次数左括号处理:保存当前状态&a…...
《通信之道——从微积分到 5G》读书总结
第1章 绪 论 1.1 这是一本什么样的书 通信技术,说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号(调制) 把信息从信号中抽取出来&am…...
现代密码学 | 椭圆曲线密码学—附py代码
Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...
【C++进阶篇】智能指针
C内存管理终极指南:智能指针从入门到源码剖析 一. 智能指针1.1 auto_ptr1.2 unique_ptr1.3 shared_ptr1.4 make_shared 二. 原理三. shared_ptr循环引用问题三. 线程安全问题四. 内存泄漏4.1 什么是内存泄漏4.2 危害4.3 避免内存泄漏 五. 最后 一. 智能指针 智能指…...
【LeetCode】算法详解#6 ---除自身以外数组的乘积
1.题目介绍 给定一个整数数组 nums,返回 数组 answer ,其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法,且在 O…...
【Linux手册】探秘系统世界:从用户交互到硬件底层的全链路工作之旅
目录 前言 操作系统与驱动程序 是什么,为什么 怎么做 system call 用户操作接口 总结 前言 日常生活中,我们在使用电子设备时,我们所输入执行的每一条指令最终大多都会作用到硬件上,比如下载一款软件最终会下载到硬盘上&am…...
Pydantic + Function Calling的结合
1、Pydantic Pydantic 是一个 Python 库,用于数据验证和设置管理,通过 Python 类型注解强制执行数据类型。它广泛用于 API 开发(如 FastAPI)、配置管理和数据解析,核心功能包括: 数据验证:通过…...
基于江科大stm32屏幕驱动,实现OLED多级菜单(动画效果),结构体链表实现(独创源码)
引言 在嵌入式系统中,用户界面的设计往往直接影响到用户体验。本文将以STM32微控制器和OLED显示屏为例,介绍如何实现一个多级菜单系统。该系统支持用户通过按键导航菜单,执行相应操作,并提供平滑的滚动动画效果。 本文设计了一个…...
