回归预测 | Matlab基于OOA-SVR鱼鹰算法优化支持向量机的数据多输入单输出回归预测
回归预测 | Matlab基于OOA-SVR鱼鹰算法优化支持向量机的数据多输入单输出回归预测
目录
- 回归预测 | Matlab基于OOA-SVR鱼鹰算法优化支持向量机的数据多输入单输出回归预测
- 预测效果
- 基本描述
- 程序设计
- 参考资料
预测效果
基本描述
1.Matlab基于OOA-SVR鱼鹰算法优化支持向量机的数据多输入单输出回归预测(完整源码和数据)
2.OOA选择最佳的SVM核函数参数c和g;
3.多特征输入单输出的回归预测。程序内注释详细,excel数据,直接替换数据就可以用。
4.程序语言为matlab,程序可出预测效果图,迭代优化图,相关分析图,运行环境matlab2020b及以上。评价指标包括:R2、RPD、MSE、RMSE、MAE、MAPE等。
5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
程序设计
- 完整程序和数据获取方式资源出下载Matlab基于OOA-SVR鱼鹰算法优化支持向量机的数据多输入单输出回归预测。
%% 参数设置
%% 优化算法
[Best_score,Best_pos, curve] = OOA(pop, Max_iteration, lb, ub, dim, fun); %% 获取最优参数
bestc = Best_pos(1, 1);
bestg = Best_pos(1, 2); %% 建立模型
cmd = [' -t 2 ', ' -c ', num2str(bestc), ' -g ', num2str(bestg), ' -s 3 -p 0.01 '];
model = svmtrain(t_train, p_train, cmd);%% 仿真预测
[t_sim1, error_1] = svmpredict(t_train, p_train, model);
[t_sim2, error_2] = svmpredict(t_test , p_test , model);%% 数据反归一化
T_sim1 = mapminmax('reverse', t_sim1, ps_output);
T_sim2 = mapminmax('reverse', t_sim2, ps_output);
T_sim1 =T_sim1';
T_sim2 =T_sim2';
%% 适应度曲线
figure;
plot(1 : length(curve), curve, 'LineWidth', 1.5);
title('适应度曲线', 'FontSize', 13);
xlabel('迭代次数', 'FontSize', 13);
ylabel('适应度值', 'FontSize', 13);
grid
set(gcf,'color','w')%% 相关指标计算
%% 均方根误差
toc
%% 测试集结果
figure;
plotregression(T_test,T_sim2,['回归图']);
set(gcf,'color','w')
figure;
ploterrhist(T_test-T_sim2,['误差直方图']);
set(gcf,'color','w')
%% 均方根误差 RMSE
error1 = sqrt(sum((T_sim1 - T_train).^2)./M);
error2 = sqrt(sum((T_test - T_sim2).^2)./N);%%
%决定系数
R1 = 1 - norm(T_train - T_sim1)^2 / norm(T_train - mean(T_train))^2;
R2 = 1 - norm(T_test - T_sim2)^2 / norm(T_test - mean(T_test ))^2;%%
%均方误差 MSE
mse1 = sum((T_sim1 - T_train).^2)./M;
mse2 = sum((T_sim2 - T_test).^2)./N;
%%
%RPD 剩余预测残差
SE1=std(T_sim1-T_train);
RPD1=std(T_train)/SE1;SE=std(T_sim2-T_test);
RPD2=std(T_test)/SE;
%% 平均绝对误差MAE
MAE1 = mean(abs(T_train - T_sim1));
MAE2 = mean(abs(T_test - T_sim2));
%% 平均绝对百分比误差MAPE
MAPE1 = mean(abs((T_train - T_sim1)./T_train));
MAPE2 = mean(abs((T_test - T_sim2)./T_test));
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229
相关文章:

回归预测 | Matlab基于OOA-SVR鱼鹰算法优化支持向量机的数据多输入单输出回归预测
回归预测 | Matlab基于OOA-SVR鱼鹰算法优化支持向量机的数据多输入单输出回归预测 目录 回归预测 | Matlab基于OOA-SVR鱼鹰算法优化支持向量机的数据多输入单输出回归预测预测效果基本描述程序设计参考资料 预测效果 基本描述 1.Matlab基于OOA-SVR鱼鹰算法优化支持向量机的数据…...
Spring Boot整合MyBatis
引言 在现代Java开发中,Spring Boot和MyBatis被广泛使用,它们分别代表了轻量级的企业级开发框架和优秀的持久化框架。本文将探讨如何在Spring Boot项目中整合MyBatis,以构建高效、灵活且易于维护的持久层。通过这一完美结合,开发…...
MySQL语句 | 在MySQL中解析JSON或将表中字段值合并为JSON
MySQL提供了一系列的JSON函数来处理JSON数据,包括从JSON字符串中提取值和将表中字段值合并为JSON等。 在MySQL中解析JSON 可使用JSON_EXTRACT函数提取JSON字符串中指定字段的值,使用JSON_UNQUOTE函数去除提取的字符串值周围的引号,以得到原…...

基于springboot+vue的图书个性化推荐系统(前后端分离)
博主主页:猫头鹰源码 博主简介:Java领域优质创作者、CSDN博客专家、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战 主要内容:毕业设计(Javaweb项目|小程序等)、简历模板、学习资料、面试题库、技术咨询 文末联系获取 项目背景…...
将自然数序列剔除掉包含4的数字,求第k(1e12)个数是什么
题目 思路:将k转化为九进制,然后将大于等于4的数字加一 #include <bits/stdc.h> using namespace std; #define int long long #define pb push_back const int maxn 1e6 5, inf 1e9, maxm 5e3 5; int a[maxn], b[maxn]; string s; int n, …...

用Photoshop来制作GIF动画
录了个GIF格式的录屏文件,领导让再剪辑下,于是用Photoshop2023(PS版本低至CS6操作方式一样)进行剪辑,录屏文件有约1400帧,由于我处理的帧数太多,PS保存为GIF格式时,还是挺耗时的&…...
原地swap(inplace_swap)
inplace_swap algorithm based on exclusive-or (^) void inplace_swap(int *x, int *y) {*y *x ^ *y;*x *x ^ *y;*y *x ^ *y; }原理(展开为二进制计算异或即可): 0 ^ 0 0 0 ^ 1 1 1 ^ 0 1 1 ^ 1 0 reverse_array algorithm based on inplace_swap void re…...

《JVM由浅入深学习九】 2024-01-15》JVM由简入深学习提升分(生产项目内存飙升分析)
目录 开头语内存飙升问题分析与案例问题背景:我华为云的一个服务器运行我的一个项目“csdn-automatic-triplet-0.0.1-SNAPSHOT.jar”,由于只是用来测试的服务器,只有2G,所以分配给堆的内存1024M查询内存使用(top指令&a…...

统计学-R语言-4.6
文章目录 前言列联表条形图及其变种---单式条形图条形图及其变种---帕累托图条形图及其变种---复式条形图条形图及其变种---脊形图条形图及其变种---马赛克图饼图及其变种---饼图饼图及其变种---扇形图直方图茎叶图箱线图小提琴图气泡图总结 前言 本篇文章是对数据可视化的补充…...

git提权
实验环境——vulnhub-dc2靶场 git提权 前提:用户可以使用sudo中git权限 查看sudo权限 sudo -l可以发现git命令存在sudo提权 基于此进行权限提升 方式: sudo git help config #在末行命令模式输入 !/bin/bash 或 !sh #完成提权 sudo git -p help…...

实验四 SQL语言
🕺作者: 主页 我的专栏C语言从0到1探秘C数据结构从0到1探秘Linux 😘欢迎关注:👍点赞🙌收藏✍️留言 🏇码字不易,你的👍点赞🙌收藏❤️关注对我真的很重要&…...

2024年简历石沉大海,别投了,软件测试岗位饱和了....
🔥 交流讨论:欢迎加入我们一起学习! 🔥 资源分享:耗时200小时精选的「软件测试」资料包 🔥 教程推荐:火遍全网的《软件测试》教程 📢欢迎点赞 👍 收藏 ⭐留言 …...

JS执行顺序
众所周知,JavaScript 是单线程语言,只能同时执行做一件事(js只有一个线程,称之为main thread-主线程) 1.Javascript 运行机制 main thread 主线程和 call-stack 调用栈(执行栈),所有的任务都会被放到调用栈等待主线程执行。 2.Javascript 任…...

Vscode 上安装 Compilot
GitHub Copilot 是由 OpenAI 和 GitHub 开发的 AI 工具。其目的是通过自动完成代码来帮助开发人员使用集成开发环境 (IDE),如 Visual Studio Code。它目前仅作为技术预览版提供,因此只有已在候补名单上被接受的用户才能访问它。对…...
Spring集成MyBatis与MyBatis-Plus添加分页插件
项目场景: MyBatis使用分页插件PageHelperMyBatis-Plus3.4.0版本之前添加分页插件,使用配置PaginationInterceptor;MyBatis-Plus3.4.0版本添加分页插件,使用配置MybatisPlusInterceptor; 配置示例: 1、My…...

Windows下载安装vcpkg并使用它来安装第三方库(visualstudio)
1.使用Git下载vcpkg仓库(下载比较慢,个人比较喜欢打开下面网址然后用迅雷下载,速度飞快) git clone "https://github.com/Microsoft/vcpkg.git"2.下载好之后解压打开文件夹,双击bootstrap-vcpkg.bat文件&…...
leetcode-2788按分隔符拆分字符串
题目链接 2788. 按分隔符拆分字符串 - 力扣(LeetCode) 解题思路 class Solution:def splitWordsBySeparator(self, words: List[str], separator: str) -> List[str]:result []for i in words:for j in i.split(separator):if j:result.append(j)…...
使用Ctrl+Alt+T快速打开Windows Terminal终端
在Ubuntu中我们通常使用CtrlAltT来快速打开终端,这样即炫酷又方便。然而在Windows并没有默认快捷键打开终端的操作,需要我们折腾一番。操作也不复杂,可以通过一般人都不知道用来干什么的“快捷方式”来实现。 创建Windows Terminal终端的快捷…...

Redis 消息队列和发布订阅
文章目录 基本模式生产者消费者原理&模型redis实现java实现 发布者订阅者原理&模型redis实现java实现 stream模式原理&模型工作原理redis实现Java实现 选型外传 基本模式 采用redis 三种方案: ● 生产者消费者:一个消息只能有一个消费者 ●…...

去掉element-ui的el-table的所有边框+表头+背景颜色
实例: 1.去掉table表头(加上:show-header"false") <el-table:data"tableData":show-header"false"style"width: 100%"> </el-table> 2.去掉table所有边框 ::v-deep .el-table--border th.el-table__cell, ::v-deep .el…...

网络编程(Modbus进阶)
思维导图 Modbus RTU(先学一点理论) 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议,由 Modicon 公司(现施耐德电气)于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...
OpenLayers 可视化之热力图
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 热力图(Heatmap)又叫热点图,是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...

CTF show Web 红包题第六弹
提示 1.不是SQL注入 2.需要找关键源码 思路 进入页面发现是一个登录框,很难让人不联想到SQL注入,但提示都说了不是SQL注入,所以就不往这方面想了 先查看一下网页源码,发现一段JavaScript代码,有一个关键类ctfs…...

【力扣数据库知识手册笔记】索引
索引 索引的优缺点 优点1. 通过创建唯一性索引,可以保证数据库表中每一行数据的唯一性。2. 可以加快数据的检索速度(创建索引的主要原因)。3. 可以加速表和表之间的连接,实现数据的参考完整性。4. 可以在查询过程中,…...

练习(含atoi的模拟实现,自定义类型等练习)
一、结构体大小的计算及位段 (结构体大小计算及位段 详解请看:自定义类型:结构体进阶-CSDN博客) 1.在32位系统环境,编译选项为4字节对齐,那么sizeof(A)和sizeof(B)是多少? #pragma pack(4)st…...

智能在线客服平台:数字化时代企业连接用户的 AI 中枢
随着互联网技术的飞速发展,消费者期望能够随时随地与企业进行交流。在线客服平台作为连接企业与客户的重要桥梁,不仅优化了客户体验,还提升了企业的服务效率和市场竞争力。本文将探讨在线客服平台的重要性、技术进展、实际应用,并…...

让AI看见世界:MCP协议与服务器的工作原理
让AI看见世界:MCP协议与服务器的工作原理 MCP(Model Context Protocol)是一种创新的通信协议,旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天,MCP正成为连接AI与现实世界的重要桥梁。…...
【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统
目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索(基于物理空间 广播范围)2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...

短视频矩阵系统文案创作功能开发实践,定制化开发
在短视频行业迅猛发展的当下,企业和个人创作者为了扩大影响力、提升传播效果,纷纷采用短视频矩阵运营策略,同时管理多个平台、多个账号的内容发布。然而,频繁的文案创作需求让运营者疲于应对,如何高效产出高质量文案成…...

逻辑回归暴力训练预测金融欺诈
简述 「使用逻辑回归暴力预测金融欺诈,并不断增加特征维度持续测试」的做法,体现了一种逐步建模与迭代验证的实验思路,在金融欺诈检测中非常有价值,本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...